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“Hard work and Sincerity will fetch you anything, just anything”

My Dad



Abstract

This thesis contains the Hamiltonian formulation of a chain of identical rigid bodies with

nearest neighbour interaction and presents numerical results for the corresponding dynamics

based on a symplectic algorithm. The (finite) rotation of rigid bodies has been described

using the matrix representation as well as unit quaternion based representation of the special

rotation group. In both representations, the accompanying rigid body constraints, which are

holonomic, have been incorporated through Lagrange multipliers. For example this has been

done to capture the unit quaternion constraint. The (constrained) Hamiltons equations have

been solved using some existing symplectic algorithms. The numerical algorithms for the

constrained problem conserve its symplectic structure.



Acknowledgements

I would like to express my sincere gratitude to my supervisor, Dr. Basant Lal sharma for his

ideas, guidance and suggestions. Without his valuable guidance, this work would never have

been successful. His pristine approach toward research inspire me to work honestly, ethically

and think independently. I am thankful for his patience and trust in me, when I was slow

and low.

I would like to thank Dr. Ishan Sharma for showing me the glimpse of mechanics and

mathematics and encouraging me to do research. I am thankful to my seniors Suhail and

Anup da for their guidance. Discussion with them has been very helpful in my research work.

I would like to thank my friends and colleagues for their constant help and encouragement.

I would like to thank my awesome wingies Arpan, Alok, Hitanshu, Pulkit, Boxer, Lohan,

Baba, Jais, Gauss, Ayush, Kamla, Deepesh, Siddharth, Tekari, Nikhil, Ambu, Sandy and

Ashu for making my stay at college memorable. I am especially thankful to my nerdy physics

friends Vivek lohani and Siddharth Chandra for whom Physics and Linux are mere grammar.

Delightful discussion with them has changed my view on physics and mathematics. I would

also like to thank my labmates Navin, Pankaj, Santosh, Surbhit, Mr. Roy, Tanmay da,

Paritosh da, Prempal, Uday and Devkant for making the working environment pleasant.

Pankaj and Navin are indeed my friends with benefits.

I cannot thank enough my family who love me and trust me more than anybody else in this

world. They have always backed me that I can do good things.

Vikash Chaurasia May 2012

iv



Contents

Certificate i

Abstract iii

Acknowledgements iv

List of Figures vii

1 Introduction 1

1.1 Introduction of rigid body dynamics . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Literature survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Numerical experiment 4

2.1 Simple harmonic motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Non-linear pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Kepler’s problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Galactic orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Symmetric top . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Dynamics of three dimensional chain 16

3.1 Rigid body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Hamiltonian formulation using rotation matrix . . . . . . . . . . . . . . . . . 18

3.2.1 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.2 Hamilton’s equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.3 Gradient of Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.4 Boundary condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Hamiltonian formulation using quaternion . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Rotational mass matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.2 Rotational kinetic energy . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.3 Potential energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.4 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.5 Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.6 Gradient of potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.7 Boundary condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.8 Expression for Lagrange multiplier λj . . . . . . . . . . . . . . . . . . 34

3.3.9 Non-Dimensionalisation . . . . . . . . . . . . . . . . . . . . . . . . . . 35

v



Contents vi

3.4 Order and Symplecticity of constrained algorithm . . . . . . . . . . . . . . . . 36

3.4.1 Order of the constrained algorithm . . . . . . . . . . . . . . . . . . . . 37

3.4.2 Symplecticity of the constrained algorithm . . . . . . . . . . . . . . . 39

3.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5.1 Potential energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Conclusion and Future work 46

4.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

A Rotation matrix 48

A.1 Rotation matrix in terms of quaternions . . . . . . . . . . . . . . . . . . . . . 48

A.2 Euler angle and quaternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

B RATTLE algorithm 52

C Proof of Lemma 1 56

Bibliography 59



List of Figures

1.1 Constraining rigid bodies in a chain [1] . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Schematic diagram of a simple graphitic molecular bearing [2] . . . . . . . . . 2

2.1 Hamiltonian (in J) vs time(in sec.) . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 p vs q, RadauIIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 p vs q, Implicit midpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Hamiltonian(in J) vs time(in sec.), RadauIIA . . . . . . . . . . . . . . . . . . 7

2.5 Hamiltonian(in J) vs time(in sec.), Implicit midpoint . . . . . . . . . . . . . . 7

2.6 Explicit euler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.7 Symplectic Euler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.8 Stormer-verlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.9 Gauss6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.10 Poincare section, Calculated (left) and Hairer[3] (right) . . . . . . . . . . . . 9

2.11 Hamiltonian(in J) vs time(in sec.) comparison for RK4 and Gauss6 . . . . . . 10

2.12 Symmetric body and its axes . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.13 3D coordinate of centre of mass . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.14 X-Y coordinate of centre of mass . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.15 Coordinates of center of mass of top vs time(in sec.) . . . . . . . . . . . . . . 14

2.16 Angular momentum (in kgm2s−1) vs time(in sec.) . . . . . . . . . . . . . . . 15

2.17 Hamiltonian of the top(in J) vs time (in sec.) . . . . . . . . . . . . . . . . . . 15

2.18 z coordinate of com . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.19 Error in Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 three dimensional chain of rigid bodies . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Configuration of particles in a rigid body . . . . . . . . . . . . . . . . . . . . 17

3.3 Error in unit quaternion vs step size for symplectic algorithms . . . . . . . . 39

3.4 Rigid tetrahedron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Energy(in J) vs number of steps for c1-c2 boundary condition . . . . . . . . . 43

3.6 Energy(in J) vs number of steps for c1-c1 boundary condition . . . . . . . . . 43

3.7 Number of particle np vs time for Number of body N =6 . . . . . . . . . . . . 44

3.8 Number of body N vs time for number of particle=12 . . . . . . . . . . . . . 44

3.9 Error in unit quaternion for different bodies . . . . . . . . . . . . . . . . . . . 45

vii



Chapter 1

Introduction

1.1 Introduction of rigid body dynamics

Rigid body dynamics find application in wide variety of fields, e.g., robotics, Biomechanics,

Granular mechanics, Gaming Industries, Aerospace engineering etc. In almost all the appli-

cations, system is considered to be made up of finite number of rigid bodies attached to each

other through some interaction.

In robotics, a skeleton is modeled as multi-rigid-bodies system in which rigid bodies are linked

to each other through hinge or ball and socket type links. Six-degree freedom manipulators

[4] are used to solve the system.

Figure 1.1: Constraining rigid bodies in a chain [1]

Using rigid body dynamics algorithms, robot actuator models provide handy tool for handling

and analyzing simulation data.

1
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Figure 1.2: Schematic diagram of a simple graphitic molecular bearing [2]

One of the recent use of rigid body dynamics includes its application in studying dynamical

properties of nanosystems. Simulation of molecular bearings, joints, gears have been done

using rigid body dynamics algorithms. These algorithms are found to be very efficient [2],

making longer time simulation possible. Figure 1.2 shows graphitic molecular bearing being

modeled as pair of nested carbon nanotubes.

In Biomechanics, human body structures are studied by modeling them as chain of rigid

bodies, e.g., treatments of inter vertebral disk-degeneration [5] is based on rigid body dy-

namics. Several rigid body based modeling has been been done for chemical compounds,

biomolecules such as DNA etc.

With the advent of fast computers, many visualization softwares, based on rigid body dy-

namics have come up, offering powerful tool for the analysis. Most of the gaming softwares

are based on rigid body dynamics using quaternion as rotation parameters. Fast algorithms

used in these softwares provide excellent virtual reality platform.

1.2 Literature survey

In rigid body dynamics, several ways of rotation parameterization[6] are used. We get

different representation of the equation of motion depending on which parameterization is

used. Use of Euler’s angles to represent rotation comes with the disadvantage of singularity

involved in the representation and hence is not the popular choice to study the dynamics

of rigid bodies. In this thesis, we use Rotation matrix scheme ([7],[8]) and Quaternion as

rotation parameters. Quaternion were proposed long back due to Hamilton [9], but use
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of quaternions for studying dynamics of the rigid body was proposed due to Goldstein et

al.,[10]. Advantage of using quaternion over traditional methods mainly Euler’s angle is

that it is singularity free. Also, in contrast to Euler’s angle parameterization, which involve

trigonometric entities, equation of motion in terms of quaternion turn out to be consisting

of algebraic entities which are easier to be solved numerically. One of the disadvantage of

using Quaternion is that its length must be kept unity.

Algorithms have been proposed to solve constrained Hamiltonian system (due to unit quater-

nion constraint), but upto 1st order only. Higher order numerical schemes respecting the unit

quaternion constraint are yet to be derived. Several authors ([11],[12],[13]) have studied equa-

tion of motion for a single rigid body in terms of Quaternion, but the dynamics of chain of

rigid bodies of arbitrary shape has not been discussed.

We address the motion of rigid bodies in chain in Hamiltonian formalism in detail. One of the

particular focus in this thesis is the use of augmented angular velocity and augmented inertia

matrix in the derivation of invertible Rotational mass matrix. Use of augmented matrices

is common practice in mechanics based on Quaternion algebra. However, derivation of the

particular choice of these augmented matrices in absent in the literature. We explain the

importance of having invertible rotational mass matrix and show that it is unique.

When Hamilton’s equations of dynamical systems are solved numerically using standard ODE

solvers, e.g., ode45, Matlab(adaptive runge kutta method), Hamiltonian of the system

blows up in the long time run. This motivate us to use Symplectic schemes([14],[15],[16]) for

solving Hamilton’s equations numerically. In order to force the unit quaternion constraints,

standard projection techniques and null-space methods are discussed in the literature. How-

ever, using such techniques may destroy the symplectic structure of the system and hence

should be used cautiously. Symplectic algorithms for solving multibody system has been

addressed([17],[18],[19],[20]). However, the order of discretization discussed is upto 2nd order

only.



Chapter 2

Numerical experiment

In this chapter, we give emphasis on importance of using symplectic algorithms([15],[21],[22],[16]).

Instead of going into derivation of equations, we discuss the advantage of symplectic algo-

rithms over non-symplectic schemes by means of plots. Each of the example discussed show

different advantages of symplectic algorithms.

2.1 Simple harmonic motion

Hamiltonian for this system is given by,

H =
p2

2m
+
kq2

2
.

This system is solved for k = 4N/m, m = 1meter, initial conditions, q(0) = 0 andp(0) = 2,

step size h = .01 and tolerance 10−10 . Exact solution of system is,

q = sin(2t), p = 2 cos(2t).

We solve the system using both non-symplectic and symplectic schemes and compare the

Hamiltonian for them with the exact solution. The step size and tolerance remain same for

all the discussed algorithms.

4
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Figure 2.1: Hamiltonian (in J) vs time(in sec.)

In the Figure (2.1), plots on left hand side are solutions of non-symplectic schemes, while

that on the right side are solutions of symplectic schemes.

Explicit-Euler and Euler-A are both the first order algorithms, but in the first case Hamil-

tonian blows up while in the later case, it remain bounded. For the non-symplectic Implicit

Euler, Hamiltonian dies out and it again remain bounded in second order symplectic Stormer-

Verlet scheme. We also observe that the amplitude of oscillation of Hamiltonian is smaller

than that in Euler-A.

Fourth order Runge-kutta seems to conserve the Hamiltonian to a good extent, but Hamil-

tonian is still declining in comparison to sixth order symplectic Gauss6 scheme. Significant

variation in Hamiltonian can be observed while using Runge-kutta scheme, when simulation

is done for long time (section 2.4).
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We conclude from above discussion that, for same step size and tolerance, symplectic schemes

are a better numerical approach than non-symplectic schemes. Also, as the order of sym-

plectic scheme increases, amplitude of variation in Hamiltonian decreases.

2.2 Non-linear pendulum

In order to emphasize on phase space conserving properties of symplectic algorithms, we

reproduce here the phase plots for non-linear pendulum, discussed in Hairer, pg314 [3].

Hamiltonian of the system is

H =
p2

2
− cos(q)

(
1− p

6

)
.

We compare two schemes,

(a) Implicit Radau, non-symplectic scheme of order 3,

(b) Implicit Midpoint, symplectic scheme of order 2,

for initial conditions p0 = 0, q0 = − cos−1(−.8) and step size h = .3.

−3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

q

p

 

 

Initial

final

RadauIIA  3
rd

 order
h=.3,  12000steps

Figure 2.2: p vs q, RadauIIA
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−1.5

−1

−0.5

0

0.5

1

1.5

2

q
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final

Implicit midpoint
h=.3, 12000 steps

Figure 2.3: p vs q, Implicit midpoint

We see from the above phase plots that symplectic methods conserve phase space, while

non-symplectic do not. Also, the solution for non-symplectic implicit scheme is dying to zero

and would blow up for any non-symplectic explicit scheme.

Energy conserving property of symplectic is clearly seen in plot (2.5). While the Hamiltonian

remains bounded in Implicit-Midpoint scheme, it keeps decreasing in Radau method.
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Figure 2.4: Hamiltonian(in J) vs
time(in sec.), RadauIIA
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Figure 2.5: Hamiltonian(in J) vs
time(in sec.), Implicit midpoint

2.3 Kepler’s problem

We now analyze here Kepler’s problem as another example of highlighting advantage of

symplectic schemes over non-symplectic methods. For computing motion of two bodies,

which attract each other, one body is assumed to be center. Coordinates of other body is

given by q = (q1, q2). Hamiltonian for this system is,

H =
1

2
(p21 + p22)−

1√
q21 + q22

.

This system has been solved for initial conditions

e = .6, p1(0) = 0, p2(0) =

√
1 + e

1− e, q1(0) = 1− e, q2(0) = 0,

and compared with exact solution

q1(t) =
(1− e2) cos t

1 + e cos (t− t∗) ,

q2(t) =
(1− e2) sin t

1 + e cos (t− t∗) , t∗ = 0.

q1 vs q2 (Numerical and exact solution)

We see from figure 2.6 and figure 2.7 that, even for step size 100 times higher than Explicit

Euler, symplectic Euler-A scheme provides more accurate solution. The only disadvantage of

Euler-A is that, it is a implicit scheme which involves solving nonlinear equations. However,
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Figure 2.6: Explicit euler
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Figure 2.7: Symplectic Euler

we find the computation time1 for Explicit Euler to be 51.01 sec., while that for Euler-A is

13.71 sec. This demonstrate that symplectic schemes save computation time.
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Figure 2.8: Stormer-verlet
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Figure 2.9: Gauss6

As we increase the order of symplectic scheme, we get more and more accurate solution.

Computation time for Stormer-Verlet scheme (figure 2.8) scheme and Gauss6 schemes (figure

2.9) are 7.26 sec. and 34.09 sec respectively. So, we see from figure 2.6 and figure 2.9 that,

sixth order symplectic Gauss6 scheme give much more accurate solution than Explicit-Euler

method in lesser computational time.

2.4 Galactic orbit

We discuss here the example of Galactic orbit to demonstrate the Hamiltonian conserving

properties of symplectic schemes in long run simulations. We also compare our results with

solution given in Hairer, pg322[3].

1Computation done on a 8 core machine with ‘’Intel(R) Xenon cpu ES420 @2.5GHz processor



Chapter 2. Numerical experiment 9

Hamiltonian for this system is given by

H =
1

2
(p21 + p22 + p23) + Ω(p1q2 − p2q1) +A log

(
C +

q21
a2

+
q22
b2

+
q23
c2

)
,

where, (pi, qi)i=1,2,3 are conjugate pairs. Parameters and initial values are

a = 1.25, b = 1, c = .5, A = 1, C = 1, Ω = 0.25,

q1(0) = 2.5, q2(0) = 0, q3(0) = 0, p1(0) = 0, p2(0) = 1.688, p3(0) = .2

Hairer [3] , has discussed Poincare section with the half-plane q2 = 0, q1 > 0, q̇2 > 0, for

0 ≤ t ≤ 106. Number of points captured by such section has been compared with results

given in [3].

item method order h points (Hairer) points (Calculated)

a) Gauss 6 1/5 47093 47082
b) Gauss 6 2/5 46852 46897
c) Radau 5 1/10 46597 46594
d) Sungeng 5 1/5 47092 47085
e) RK4 4 1/40 47004 47003
f) RK4 4 1/10 46192 46190

Table 2.1: No. of points captured in Poincare section

Figure 2.10: Poincare section, Calculated (left) and Hairer[3] (right)
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Table 2.1 and figure 2.10 show good agreement of our work with published results and hence

show our correct implementation of the algorithms. Figure 2.11 clearly shows the advantage

0 0.5 1 1.5 2 2.5 3.2

x 10
4

0.8

1

1.2

1.4

1.6

1.8

2

2.2

t

H

 

 

Gauss6

RK4

h=0.4
80,000 steps

Figure 2.11: Hamiltonian(in J) vs time(in sec.) comparison for RK4 and Gauss6

of symplectic Gauss6 over non-symplectic RK4 in terms of conserving Hamiltonian. Gen-

erally difference between Gauss6 and RK4 is not significant in small run or for very small

step size, but this simulation for step size h = 0.4 and 80, 000 steps distinguishes between

two schemes. Difference is more and more pronounced as we increases the step size and/or

number of steps.

2.5 Symmetric top

In this section, we derive in detail, motion of symmetric body using concept of Euler’s

angle. In the later part of this section, we demonstrate the symmetric body problem using

quaternion and rotation matrix scheme of rotation representation. Figure 2.12 represents

schematic of a symmetric body and its orientation in terms of Euler’s angle. XYZ is the

inertial frame and xyz is the body fixed frame. ZYZ scheme is followed and corresponding

rotation matrices (frame rotation) are :

Rz(ψ) =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 , Ry(θ) =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 , Rz(φ) =


cosφ sinφ 0

− sinφ cosφ 0

0 0 1


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X
X’
X”

x Y

Y’,Y”

y

Z,Z’Z”,z

θ
φ

ψ
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θ̇

φ̇

Figure 2.12: Symmetric body and its axes

So, rotation matrix for the conversion of a vector from XYZ frame to body fixed frame xyz

is

R = Rz(φ)Ry(θ)Rz(ψ) =


cos θ cosφ cosψ − sinφ sinψ cos θ cosφ sinψ + sinφ cosψ − cosφ sin θ

− cos θ cosφ sinψ − cosφ sinψ − cos θ sinφ sinψ + cosφ cosψ sinφ sin θ

sin θ cosψ sin θ sinψ cos θ



Angular velocity in body fixed frame xyz is given by,

ω = R


0

0

ψ̇

+ Rz(φ)


0

θ̇

0

+


0

0

φ̇



ω =


θ̇ cosφ− ψ̇ sin θ cosφ

θ̇ cosφ+ ψ̇ sin θ sinφ

φ̇+ ψ̇ cos θ

 (2.1)
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For using Euler’s equation, we need to find torque acting on body in body fixed frame.

F = R


0

0

−mg

 =


mg cosφ sin θ

−mg sinφ sin θ

−mg cos θ


So, the torque in body fixed frame is T = rcm × F.

rcm = (0, 0, l)T

Therefore, torque is

T =


mgl sinφ sin θ

mgl cosφ sin θ

0


Let I1, I2 and I3 be moment of inertia along principle axis of the top. Using Euler’s

equation for motion,

I1
dωx
dt

+ (I3 − I2)ωyωz = mgl sin θ sinφ (2.2)

I2
dωy
dt

+ (I1 − I3)ωxωz = mgl sin θ cosφ (2.3)

I3
dωz
dt

+ (I2 − I1)ωxωy = 0 (2.4)

We solve Euler’s equation for symmetric bodies, i.e., for I1 = I2 = I. Thus, we see from

equation (2.4) that ωz remains constant. Substituting angular velocity from (2.1)in (2.2)

and (2.3),

θ̈ sinφ+ θ̇φ̇ cosφ− ψ̈ sin θ cosφ− ψ̇θ̇ cos θ cosφ

+ψ̇φ̇ sin θ sinφ+ ωz

(
I3
I
− 1

)
(θ̇ cosφ+ ψ̇ sin θ sinφ) =

mgl sin θ sinφ

I
(2.5)

θ̈ cosφ− θ̇φ̇ sinφ+ ψ̈ sin θ sinφ+ ψ̇θ̇ cos θ sinφ

+ψ̇φ̇ sin θ cosφ− ωz
(
I3
I
− 1

)
(θ̇ sinφ− ψ̇ sin θ cosφ) =

mgl sin θ cosφ

I
(2.6)
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(2.5)× sinφ + (2.6)× cosφ gives,

θ̈ =
mgl sin θ

I
− ψ̇φ̇ sin θ −

(
I3
I
− 1

)
ψ̇ sin θ. (2.7)

And (2.5)× cosφ -(2.6)× sinφ gives,

ψ̈ =
I(θ̇φ̇− ψ̇θ̇ cos θ) + (I3 − I)θ̇

I sin θ
. (2.8)

Second order differential equations are reduced to first order by introducing variables θ̇ = n1,

ψ̇ = n2 and φ̇ = n3. Six first order ODEs to be solved are,

ṅ1 =
mgl sin θ

I
− n2(ωz − n2 cos θ) sin θ −

(
I3
I
− 1

)
n2 sin θ

ṅ2 =
In1(ωz − 2n2 cos θ) + (I3 − I)n1

I sin θ

ṅ3 = n1n2 sin θ

θ̇ = n1

ψ̇ = n2

φ̇ = ωz − n2 cos θ

Equations above are solved using Gauss method of order 6 for following initial conditions

mass = 1.5kg l = 1.33m

step size h = .005 tolerance = 10−10

θ = 45◦ θ̇ = 1/s−1

ψ = 1◦ ψ̇ = 1/s−1

φ = 1◦ φ̇ = 100/s−1

Figure 2.13 represents motion of center of mass of the symmetric top as function of time

t. Projection of this motion in xy plane in the figure 2.14 shows oscillatory behavior of the

motion of the top.
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Some quaternion based, certain properties conserving algorithms have been developed, e.g.,

energy-angular momentum conserving scheme QUAT-EM has been proposed due to Betsch

et.al,2009 [12]. Without going into detail of the equations, we show here plots for the motion

of symmetric top under gravity for QUAT-EM scheme.
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Figure 2.15: Coordinates of center of mass of top vs time(in sec.)

Figure 2.15 shows the center of mass coordinates of symmetric top as function of time.

Similar to the figure 2.14, periodic behavior of the motion is clear from the plot here.

J1, J2 and J3 in the figure 2.16 represent angular momentum of the symmetric top in x, y

and z directions respectively. As concluded from equation 2.4, J3 should remain constant.

Figure 2.16 clearly shows the conservation of angular momentum J3. Figure 2.17 depicts

that QUAT-EM algorithm successfully conserve the Hamiltonian.
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A rotation matrix based energy conserving Rattle algorithm (second order, symplectic)was

proposed due to Leimkuhler, pg.207 [7]. Algorithm as been discussed in detail in Appendix

B. We reproduce here plots for symmetric plot discussed in Leimkuhler, pg.210 [7]. Figure

2.18 represent z coordinate of center of mass of the symmetric top. Figure 2.19 shows error

in the Hamiltonian of the system which is quite small.
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Chapter 3

Dynamics of three dimensional

chain

In this chapter, we study the motion of a chain consisting of rigid bodies of arbitrary shape

in three dimensional space. In the section 3.2, we represent rotation of the rigid bodies using

rotation matrix. In this representation, we solve the system of equations using second order

symplectic Rattle algorithm (see Appendix B). In the section 3.3, we represent rotation of the

rigid bodies using quaternions. We derive the rotational mass matrix in subsection 3.3.1 and

prove that it is unique. We incorporate unit quaternion constraint in the Hamiltonian and

derive the expression for Lagrangian multiplier in subsection 3.3.8. We show in the section

3.4 that standard symplectic algorithms remain symplectic even after addition of expression

for unit quaternion constraint in the Hamiltonian.

0
2

N

N+1

X Y

Z

xj

yj
zj

j

Stationary frame

Body fixed frame

Interaction between two bodies

Figure 3.1: three dimensional chain of rigid bodies

16
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In the figure 3.1, we represent schematic of the three dimensional chain consisting of (N+2)

rigid bodies. Indexing of the bodies start from 0 to N+1. In the schematic, boundary

condition is clamped-clamped, but we solve the chain problem for more realistic boundary

conditions discussed in section 3.3.7.

We assume that rigid bodies are made up of certain number of particles attached to each

other through rigid links. In the next section, we derive the moment of inertia of such rigid

bodies along its principal axes.

3.1 Rigid body

1
2 3

4

56

ei1

ei2

ei3

Rigid link

Centre of mass

Particle

np − 2np − 1np

Figure 3.2: Configuration of particles in a rigid body

It is assumed that rigid body consist of np number of particle attached to each other through

rigid links. Let rki and mk
i denote the position vector in coordinate frame {ei} and mass of

kth particle of ith body respectively. Our aim is to find body fixed coordinate frame with

axises at principal axis. We also find position of kth particle with respect to this body fixed

frame.

Let ri and mj denote center of mass of ith body in {ei} frame.

ri =

∑np

k=1m
k
i r
k
i∑np

k=1m
k
i

=

∑np

k=1m
k
i r
k
i

mj
.
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For now, we consider a body fixed frame with origin at center of mass of the body and having

same orientation as frame {ei}. In this body fixed frame, component of inertia matrix are,

I11 =

np∑
k=1

mk
i {[(rki − ri) · e2]2 + [(rki − ri) · e3]2},

I22 =

np∑
k=1

mk
i {[(rki − ri) · e1]2 + [(rki − ri) · e3]2},

I33 =

np∑
k=1

mk
i {[(rki − ri) · e1]2 + [(rki − ri) · e2]2},

I12 = −
np∑
k=1

mk
i {[(rki − ri) · e1][(rki − ri) · e2]},

I13 = −
np∑
k=1

mk
i {[(rki − ri) · e1][(rki − ri) · e3]},

I23 = −
np∑
k=1

mk
i {[(rki − ri) · e2][(rki − ri) · e3]}.

Principal directions Because moment of inertia tensor is a symmetric matrix, it is always

possible to diagonalize this matrix.

We relocate position of each particle of the body in the principal coordinate frame (deter-

mined from the procedure above). In order to avoid introducing new notation, from now

onwards, rki denote position of kth particle of ith body in principal coordinate frame.

We now study the dynamics of three dimensional chain using rotation matrix scheme in

which rotation of rigid bodies are represented using 3×3 rotation matrices.

3.2 Hamiltonian formulation using rotation matrix

Let {eji}i=1,2,3 denote basis of body fixed frame of jth body. Let {ei}i=1,2,3 be the basis of

inertial frame. We assume that each rigid body consist of np number of particles linked to

each other through massless rigid links. Let rki denote the coordinate of kth particle of jth

body in body fixed frame with origin at center of mass. Let rj denote the position vector of
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center of mass of jth body in stationary frame. Let Rj(t) ∈ SO(3) be the rotation matrix

relating basis {eji} to {ei} as,

{eji} = Rj(t){ei}.

Dynamics of the chain is completely determined by position of center of mass of rigid bodies

rj : R→ R3, t 7→ rj(t),

and orientation of rigid bodies

Rj : R→ SO(3), t 7→ Rj(t),

where, j = 0, 1, 2, . . . , N + 1.

So, the configuration space of the system is:

C = {R3 ×R3 . . .N+2 times × SO(3)× SO(3) . . .N+2 times}.

In order to write Hamiltonian of the system, we derive expression for total kinetic energy

and total potential energy of the system. Let mj denote the mass of jth rigid body and [J ]j

denote principal moment of inertia matrix. Velocity of kth particle of jth body in inertial

frame is,

ṙj + ṘT
j (t)rkj .

Therefore, kinetic energy of jth body is ,

T j =
1

2

np∑
k=1

mj ||ṙj ||2 +
1

2
tr
(
ṘT
j (t)[J ]jṘj(t)

)
.

In expression above, the first term represent translational kinetic energy of the body, T jtrans

and second term denotes rotational kinetic energy, T jrot.

Let the interaction potential be depending on relative distance between two bodies and their

relative orientation. Let us assume nearest neighbor interaction. Then, the general form of

potential energy contribution from the pair, ith and jth body is
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Vij = Vij(Ri,Rj , ri, rj). (3.1)

So, Lagrangian of the system is,

L =
N+1∑
j=0

{T jrot(Ṙj(t)) + T jtrans(ṙj)} −
N∑
j=0

Vj,j+1(Rj ,Rj+1, rj , rj+1). (3.2)

Using Legendre transformation, conjugate rotational momenta Pj and translational mo-

menta pj are calculated as,

Pj =
∂L
∂Ṙj

= Ṙj [J ]j , (3.3)

pj =
∂L
∂ṙj

= mj ṙj . (3.4)

Kinetic energy of the system in terms of conjugate momenta is,

N+1∑
j=0

{
1

2
tr
(
Pj [J ]−1PT

j

)
+
||pj ||2
2mj

}
. (3.5)

Hamiltonian of the system is given by

H =
N+1∑
j=0

{
1

2
tr
(
Pj [J ]−1PT

j

)
+
||pj ||2
2mj

}
+

N∑
j=0

Vj,j+1(Rj ,Rj+1, rj , rj+1).

3.2.1 Constraints

Leimkuhler and Reich [7] and Betsch et. al.,[8] have discussed the constraints to be put

on the rotation matrix Rj(t) and the conjugate momenta Pj(t). Matrix Rj(t) represent

rotation matrix iff it satisfy the orthogonality condition

RjRj
T = I3×3 and Rj

TRj = I3×3.

Because RjRj
T is a symmetric matrix, there are six independent constraints on Rj(t). This

should be expected as we are using 9 variables (3× 3 matrix) to represent the rotation in R3.

In order to enforce orthogonality condition constraint, Leimkuhler and Reich [7] introduced
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six Lagrange multipliers through a symmetric matrix Λj . So, Hamiltonian of the system is

modified by adding the term
N+1∑
j=0

tr{(RjRj
T − I)Λj}. (3.6)

Constraint on conjugate momenta is obtained by differentiating above equation with respect

to time and using (3.4),

RT
j Pj [J ]j

−1
+ [J ]j

−1
Pj

TRj = 0. (3.7)

3.2.2 Hamilton’s equations

Hamiltonian of the system, after adding the term 3.6 is,

H =

N+1∑
j=0

{
1

2
tr
(
Pj [J ]−1PT

j

)
+
||pj ||2
2mj

}
+

N∑
j=0

Vj,j+1(Rj ,Rj+1, rj , rj+1)+
N+1∑
j=0

tr{(RjRj
T−I)Λj}.

(3.8)

Phase space of this Hamiltonian system is:

P = {(rj ,pj ,Rj ,Pj)j=0,1,...,N+1 ∈M : RT
j Rj = I3,R

T
j Pj [J ]j

−1
+ [J ]j

−1
Pj

TRj = 0},

where,

M = {R3 ×R3 . . . 2N+4 times × SO(3)× SO(3) . . . 2N+4 times}.

Using Hamilton’s equations,

dPj

dt
= −∂H

∂Rj
,
dRj

dt
=
∂H

∂Pj
,
dpj
dt

= −∂H

∂rj
,
drj
dt

=
∂H

∂pj
. (3.9)

Therefore, Hamilton’s equations on phase space P are,

dpj
dt

= − ∂

∂rj
(Vj−1,j + Vj,j+1), (3.10a)

drj
dt

=
pj
mj

, (3.10b)

dPj

dt
= − ∂

∂Rj
(Vj−1,j + Vj,j+1)− 2RjΛ

j , (3.10c)

dRj

dt
= Pj [J ]j

−1
. (3.10d)



Chapter 3. Dynamics of three dimensional chain 22

Above equations are valid for j = 1 to j = N . Equations for 0th and (N + 1)th body are

taken care of in boundary conditions.

3.2.3 Gradient of Potential

In this subsection, we derive the gradient of potential with respect to rotation matrix Rj

and with respect to position vector rj . We assume, the interaction to be of particle-particle

type. In that case potential energy contribution from kth particle of ith body and lth particle

of jth body is the function of distance rk,li,j between them, given by

{rk,li,j }2 = {(ri + RT
i rki )− (rj + RT

j rlj)} · {(ri + RT
i rki )− (rj + RT

j rlj)}

= ri · ri + 2ri ·RT
i rki + rki · rki + rj · rj + 2rj ·RT

j rlj + rlj · rlj

−2(ri · rj + ri ·RT
j rlj + rj ·RT

i rki + RT
i rki ·RT

j rlj). (3.11)

So, the contribution to potential energy from the pair ith and jth body is given by

Vij =

np∑
k=1

np∑
l=1

V k,l
ij (rk,li,j ). (3.12)

Using above equation and chain rule,we rewrite Hamilton’s equations (3.13a)-(3.13d) on

phase space P in terms of the potential gradients as

dpj
dt

= −
np∑
k=1

np∑
l=1

Ak,lj−1,j{rj + RT
j rlj − rj−1 −RT

j−1r
k
j−1} (3.13a)

+Ak,lj,j+1{rj + RT
j rkj − rj+1 −RT

j+1r
l
j+1},

drj
dt

=
pj
mj

, (3.13b)

dPj

dt
= −

np∑
k=1

np∑
l=1

Ak,lj−1,jr
l
j{rTj − rTj−1 − rkTj−1Rj−1} (3.13c)

+Ak,lj,j+1r
k
j {rTj − rTj+1 − rlTj+1Rj+1} − 2RjΛ

j ,

dRj

dt
= Pj [J ]j

−1
, (3.13d)
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where,

Ak,lp,q =
∂V k,l

p,q

∂rk,lp,q

1

rk,lp,q
.

3.2.4 Boundary condition

We consider 3 possible set of boundary conditions, c1 − c1, c1 − c2 and c1 − c3, which have

been described below.

1. c1 − c1: In this case, both ends are clamped. Hence, coordinates of 0th and (N + 1)th

body remain same for all time.

r0(t) = r0(0), R0(t) = R0(0),

rN+1(t) = rN+1(0), RN+1(t) = RN+1(0),

p0(t) = 03×1, P0(t) = 03×3,

pN+1(t) = 03×1, PN+1(t) = 03×3.

Equations (3.13a)-(3.13d) are solved for j = 1, 2, 3, . . . N .

2. c1− c2: In this case, one end is clamped and force is applied at other end, but this end

is free to rotate. So, for 0th body,

r0(t) = r0(0), R0(t) = R0(0),

p0(t) = 03×1, P0(t) = 03×3.

Let the applied constant force be F. Then work done on the system is,

WF = −F · rN+1.
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We add this work WF to the Hamiltonian of the system (3.8) and using Hamilton’s

equations (3.13a)-(3.13d), we get equations for (N + 1)th body as,

dpN+1

dt
= −

np∑
k=1

np∑
l=1

Ak,lN,N+1{rN+1 + RT
N+1r

l
N+1 − rN −RT

NrkN}+ F,

drN+1

dt
=

pN+1

mN+1
,

dPN+1

dt
= −

np∑
k=1

np∑
l=1

Ak,lN,N+1r
l
N+1{rTN+1 − rTN − rkTN RN} − 2RN+1Λ

N+1,

dRN+1

dt
= PN+1[J ]N+1−1

.

Equations for j = 1, 2, . . . N remain same as in (3.13a)-(3.13d).

3. c1 − c3: In this case, one end is clamped and constant displacement d is specified at

other end, but this end is free to rotate. So, the boundary conditions are

r0(t) = r0(0), R0(t) = R0(0),

p0(t) = 03×1, P0(t) = 03×3,

rN+1(t) = d, pN+1(t) = 03×1.

Because the position of (N + 1)th body is given as constant displacement d, ṙN+1 = 0

and ṗN+1 = 0. Therefore, using (3.13a)-(3.13d), equations for (N + 1)th body are

dpN+1

dt
= 03×1,

drN+1

dt
= 03×1,

dPN+1

dt
= −

np∑
k=1

np∑
l=1

Ak,lN,N+1r
l
N+1{dT − rTN − rkTN RN} − 2RN+1Λ

N+1,

dRN+1

dt
= PN+1[J ]N+1−1

.

Equations for j = 1, 2, . . . N remain same as in (3.13a)-(3.13d).
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Rotation matrix based symplectic schemes have been proposed due to Leimkuhler and Sebas-

tian [7]. We have extended this idea to multibody problem and have proposed Hamiltonian

formulation for three dimensional chain. Numerical schemes base on rotation matrix have

been proposed due to Leimkuhler [7] and Shuichi[23]. Appendix B discuss Rattle [7] algo-

rithm in detail. Because this representation has larger configuration space than quaternion

representation, we will be using quaternion based schemes to solve the system numerically.

However, rotation matrix scheme is still better than Euler’s angle scheme as it does not

involve any singularity and hence should be given preference over Euler’s angle scheme.

As discussed earlier, quaternion schemes have advantage over rotation matrix scheme because

of lesser dimensional configuration space. We develop a quaternion based scheme for studying

dynamics of three dimensional chain.

3.3 Hamiltonian formulation using quaternion

Let {eji}i=1,2,3 denote basis of body fixed frame of jth body. Let {ei}i=1,2,3 be the basis of

inertial frame. Let rj denote the position vector of center of mass of jth body in stationary

frame. Motion of three dimensional chain consisting of (N + 2) number of rigid bodies is

completely determined by coordinate of center of mass of rigid bodies

rj : R→ R3, t 7→ rj(t),

and set of unit quaternions

qj : R→ S3 = ∂BH1 (0) ↪→ H, t 7→ qj(t),

where, j = 0, 1, 2, . . . , N + 2, and the set of unit quaternions S3 = ∂BH1 (0) = {qj ∈ H :

||q|| = 1} ⊂ H, is a subgroup of the multiplicative quaternion group H.

Configuration space of the system is:

C = {R3 ×R3 . . .N+2 times ×H×H . . .N+2 times}.
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For the quaternion qj = {qj,0, qj,1, qj,2, qj,3}T ∈ {R4 = H}, rotation matrix R(qj) is given

by Euler map

R : H→ SO(3), qj → R(qj),

where,

R(qj) =


2q2j,0 + 2q2j,1 − 1 2qj,1qj,2 − 2qj,0qj,3 2qj,1qj,3 + 2qj,0qj,2

2qj,1qj,2 + 2qj,0qj,3 2q2j,0 + 2q2j,2 − 1 2qj,2qj,3 − 2qj,0qj,1

2qj,3qj,1 − 2qj,0qj,2 2qj,3qj,2 + 2qj,0qj,1 2q2j,0 + 2q2j,3 − 1

 . (3.14)

We have derived this Euler map in Appendix A.

In order to write Hamiltonian of the system, we derive total kinetic energy and total potential

energy of the system in terms of quaternions. Translational kinetic energy is independent of

quaternion and is given by

T jtrans =
p2
j

2mj
, (3.15)

where, pj and mj are linear momentum and mass of jth body respectively.

We have derived angular velocity of a rotating body in terms of quaternions in Appendix A.

Angular velocity ωj of jth body depends on both, the quaternion qj and its time derivative q̇j .

Therefore, rotational mass matrix, unlike translational mass matrix, will not be a constant

and hence need special mention.

3.3.1 Rotational mass matrix

Rotation kinetic energy of jth rigid body is given by

T jrot =
1

2
ωj

T
[J ]jωj ,

where ωj is the angular velocity of the jth body in body fixed frame and [J ]j is the principal

moment of inertia matrix. Angular velocity ωj from (A.12) is
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ωj = 2G(qj)q̇j , G(qj) =


−qj,1 qj,0 qj,3 −qj,2
−qj,2 −qj,3 qj,0 qj,1

−qj,3 qj,2 −qj,1 qj,0

 .

Substituting ωj in kinetic energy,

T jrot = 2q̇Tj G(qj)
T [J ]jG(qj)q̇j .

Using Legendre transformation, conjugate momenta gj is given by

gj =
∂T jrot
∂q̇j

= 4G(qj)
T [J ]jG(qj)q̇j .

From the construction of G(qj), we see that G(qj)qj = 0. Thus there is rank deficiency in

the matrix G(qj)
T [J ]jG(qj) and hence, is non-invertible. Therefore, we cannot get q̇j in

terms of gj .

Lemma 1. In order to get q̇j in terms of gj , augmented matrices ω̂(qj , q̇j), Ĝ(qj) and ˆ[J ]
j

are introduced such that

ω̂(qj , q̇j) = [0 ωT ]T = 2Ĝ(qj)4×4[q̇j ],

Ĝ(qj) =



qj,0 qj,1 qj,2 qj,3

−qj,1 qj,0 qj,3 −qj,2
−qj,2 −qj,3 qj,0 qj,1

−qj,3 qj,2 −qj,1 qj,0


, (3.16)
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and

[Ĵ ]j =



1 0 0 0

0 J j1 0 0

0 0 J j2 0

0 0 0 J j3


. (3.17)

.

Proof: Appendix C

So, the rotational kinetic energy in terms of augmented matrices is,

T jrot =
1

2
q̇Tj µ(qj)q̇j ,

where,

µ(qj) = 4Ĝ(qj)
T [Ĵ ]jĜ(qj). (3.18)

denotes the rotational mass matrix.

We have derived the rotational mass matrix which is invertible and have show that it is

unique. This mass matrix is the function of quaternion qj as expected from the form of

angular velocity ω.

Using this invertible mass matrix, we derive the rotational kinetic energy in terms conjugate

momenta.

3.3.2 Rotational kinetic energy

From above subsection,

T jrot =
1

2
q̇Tj µ(qj)q̇j .

We obtain the conjugate momenta by legendre transform,

gj =
∂Trot
∂q̇

= µ(qj)q̇j .

Using [Ĝ(qj)
−1 = Ĝ(qj)

T ],

q̇j = µ−1(qj)gj ,
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where,

µ−1(qj) =
1

4
Ĝ(qj)

T [Ĵ j ]−1Ĝ(qj). (3.19)

So, the rotational kinetic energy in terms of conjugate momenta is

T jrot =
1

2
gj
Tµ−1(qj)gj .

By structure of Ĝ(qj) from equation C.3, we see that

Ĝ(qj)gj = −Ĝ(gj)q. (3.20)

Hence,

T jrot =
1

2
gj
Tµ−1(qj)gj =

1

2
qj

Tµ−1(gj)qj . (3.21)

Above equations is useful when we differentiate the Hamiltonian with quaternion qj .

3.3.3 Potential energy

Our system consists of (N+2) bodies, indexing from 0 to N+1. We assume that jth body

interact with its nearest neighbors, i.e., with (j − 1)th body and (j + 1)th body. It is also

assumed that potential energy depends on relative position of center of mass of the bodies

and their relative orientation. So, the general form of potential energy of the system is given

by

V =
N∑
j=0

Vj,j+1, Vij = Vij(qj ,qj+1, rj , rj+1). (3.22)

3.3.4 Constraints

Unit quaternion constraint is incorporated in Hamiltonian by adding the term,

N∑
j=1

λj(q
T
j qj − 1), (3.23)

where, λj is the Lagrangian multiplier corresponding to jth body. Because quaternion (vector

in R4) represents rotation in R3, there is only one constraint equation. We derive the
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constraint on conjugate momenta gj

qTj gj = 0,

in the subsection 3.3.8.

We, now have total kinetic energy , total potential energy and constraints on the system. So,

we derive the Hamilton’s equation for the three dimensional chain in terms of quaternions.

3.3.5 Hamiltonian

Hamiltonian of the system is :

H = H (p1, . . . ,pn, r1, . . . , rn,g1, . . .gn,q1, . . .qn). (3.24)

Phase space coordinates (gj ,qj)j=0,1,...N+1 lie on the manifold,

P = {(gj ,qj)j=0,1,...N+1 ∈ H×H . . . 2N+4 times : qTj qj = 1,qTj gj = 0}. (3.25)

We suppress argument of Hamiltonian from now onwards.

H =

N+1∑
j=0

1

2
gj
Tµ−1(qj)gj +

N+1∑
j=0

p2
j

2mj
+

N∑
j=0

Vj,j+1(qj ,qj+1, rj , rj+1) +

N+1∑
j=0

λj(q
T
j qj − 1).

(3.26)

Using Hamilton’s equations,

dgj
dt

= −∂H

∂qj
,
dqj
dt

=
∂H

∂gj
,
dpj
dt

= −∂H

∂rj
,
drj
dt

=
∂H

∂pj
. (3.27)
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Therefore, Hamilton’s equations on the phase space P are

dpj
dt

= − ∂

∂rj
{Vj−1,j(qj−1,qj , rj−1, rj) + Vj,j+1(qj ,qj+1, rj , rj+1)}, (3.28a)

drj
dt

=
pj
mj

, (3.28b)

dgj
dt

= −µ−1(gj)qj −
∂

∂qj
{Vj−1,j(qj−1,qj , rj−1, rj) (3.28c)

+Vj,j+1(qj ,qj+1, rj , rj+1)} − 2λjqj ,

dqj
dt

= µ−1(qj)gj . (3.28d)

Above equations are applicable for j = 1, 2, . . . , N . Equations for j = 0, N + 1 are given

according to boundary conditions.

3.3.6 Gradient of potential

In this subsection, we derive the gradient of potential with respect to rotation matrix R(qi)

and with respect to position vector ri. We assume, the interaction to be of particle-particle

type. In that case potential energy contribution from kth particle of ith body and lth particle

of jth body is the function of distance rk,li,j between them, given by

{rk,li,j }2 = {(ri +R(qi)
T rki )− (rj +R(qj)

T rlj)} · {(ri +R(qi)
T rki )− (rj +R(qj)

T rlj)}

= ri · ri + 2ri ·R(qi)
T rki + rki · rki + rj · rj + 2rj ·R(qj)

T rlj + rlj · rlj

−2(ri · rj + ri ·R(qj)
T rlj + rj ·R(qi)

T rki +R(qi)
T rki ·R(qj)

T rlj). (3.29)

So, the contribution to potential energy from the pair ith and jth body is

Vij =

np∑
k=1

np∑
l=1

V k,l
ij (rk,li,j ). (3.30)

Therefore,

∂Vij
∂ri

=

np∑
k=1

np∑
l=1

∂V k,l
ij

∂ri
=

np∑
k=1

np∑
l=1

∂V k,l
ij

∂rk,li,j

∂rk,li,j
∂ri

.

For obtaining the derivative of potential with respect to position vector rj , we calculate

∂rk,li,j
∂ri

=
1

rk,li,j
{ri +R(qi)

T rki − (rj +R(qj)
T rlj)}.
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Similarly for differentiation with respect to quaternion qi,

∂Vij
∂qi

=

np∑
k=1

np∑
l=1

∂V k,l
ij

∂qi
=

np∑
k=1

np∑
l=1

∂V k,l
ij

∂rk,li,j

∂rk,li,j
∂qi

,

where,

∂rk,li,j
∂qi

=



∂rk,li,j

∂qi,0
∂rk,li,j

∂qi,1
∂rk,li,j

∂qi,2
∂rk,li,j

∂qi,3


.

∂rk,li,j
∂qi,s

=
1

rk,li,j

{
(ri +R(qi)

T rki )− (rj +R(qj)
T rlj)

}
· ∂R(qi)

T

∂qi,s
rki , [s = 0, 1, 2, 3].

∂R(qi)
T

∂qi,0
=


qi,0 qi,3 -qi,2

-qi,3 qi,0 qi,1

qi,2 -qi,1 qi,0

 , ∂R(qi)
T

∂qi,1
=


qi,1 qi,2 qi,3

qi,2 -qi,1 qi,0

qi,3 -qi,0 -qi,1

 ,

∂R(qi)
T

∂qi,0
=


-qi,2 qi,1 -qi,0

qi,1 qi,2 qi,3

qi,0 qi,3 -qi,2

 , ∂R(qi)
T

∂qi,1
=


-qi,3 qi,0 qi,1

-qi,0 -qi,3 qi,2

qi,1 qi,2 qi,3

 .

3.3.7 Boundary condition

We consider 3 possible set of boundary conditions, c1 − c1, c1 − c2 and c1 − c3, which have

been described below.

1. c1 − c1: In this case, both ends are clamped. Hence, coordinates of 0th and (N + 1)th

body remain same for all time.

r0(t) = r0(0), q0(t) = q0(0),

rN+1(t) = rN+1(0), qN+1(t) = qN+1(0),

p0(t) = 03×1, g0(t) = 04×1,

pN+1(t) = 03×1, gN+1(t) = 04×1.
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Equations (3.28a)-(3.28d) are solved for j = 1, 2, 3, . . . N .

2. c1− c2: In this case, one end is clamped and force is applied at other end, but this end

is free to rotate. So, for 0th body,

r0(t) = r0(0), q0(t) = q0(0),

p0(t) = 03×1, g0(t) = 04×1,

Let the applied constant force be F. Then work done on the system is,

WF = −F · rN+1. (3.31)

We add this work WF to the Hamiltonian of the system (3.26) and using Hamilton’s

equations (3.28a)-(3.28d), we get equations for (N + 1)th body as,

dpN+1

dt
= −∂(VN,N+1(qN ,qN+1, rN , rN+1)

∂rN+1
+ F,

drN+1

dt
=

pN+1

mN+1
,

dgN+1

dt
= −∂(VN,N+1(qN ,qN+1, rN , rN+1)

∂qN+1
− 2qN+1λN+1,

dqN+1

dt
= µ−1(qN+1)gN+1.

Equations for j = 1, 2, . . . N remain same as in (3.28a)-(3.28d).

3. c1 − c3: In this case, one end is clamped and displacement d is specified at other end,

but this end is free to rotate. So, the boundary conditions are

r0(t) = r0(0), q0(t) = q0(0),

p0(t) = 03×1, g0(t) = 04×1,

rN+1(t) = d, pN+1(t) = 03×1.
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Equations for (N + 1)th body are

dpN+1

dt
= 03×1,

drN+1

dt
= 03×1,

dgN+1

dt
= −∂(VN,N+1(qN ,qN+1, rN ,d)

∂qN+1
− 2qN+1λN+1,

dqN+1

dt
= µ−1(qN+1)gN+1.

Equations for j = 1, 2, . . . N remain same as in (3.28a)-(3.28d).

We derive the expression for the Lagrange multiplier using these Hamiltonian equations and

the constraint expression. We feed this Lagrange multiplier in Hamilton’s equations and

solve the ODEs.

3.3.8 Expression for Lagrange multiplier λj

Using (3.19) and (3.28d),

qTj q̇j =
1

4
qTj Ĝ(qj)

T [Ĵ−1]Ĝ(qj)gj

=
1

4
[1 , 0 , 0 , 0]Ĝ(qj)gj

=
1

4
qTj gj .

Differentiating the unit quaternion constraint with respect to time, we get qTj q̇j = 0. There-

fore,

qTj gj = 0.

Differentiating above constraint with respect to time, we have qTj ġj + q̇Tj gj = 0. Using

(3.28d) and (3.28d),
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qTj ġj + q̇Tj gj = −qTj µ−1(gj)qj − qTj
∂Ṽj
∂qj
− 2λjq

T
j qj (3.32)

+gTj µ
−1(qj)gj .

=⇒ λj = −1

2
qTj

∂Ṽ

∂qj
,

where,

Ṽj =



Vj,j+1(qj ,qj+1, rj , rj+1), if j = 0,

Vj−1,j(qj−1,qj , rj−1, rj)

+Vj,j+1(qj ,qj+1, rj , rj+1), if 0 < j < n+ 1,

Vj−1,j(qj−1,qj , rj−1, rj), if j = N + 1.

(3.33)

3.3.9 Non-Dimensionalisation

We reduce number of parameters by non-dimensionalising equations by following parameters,

rj = Lr̃j ,

rkj = Lr̃kj ,

mj = Mm̃j ,

t = τ t̃.

Hence,

pj = mj
drj
dt

=
ML

τ
m̃j

dr̃j

dt̃
=
ML

τ
p̃j ,

Ĵ j = ML2 ˆ̃J
j
,

gj = 4Ĝ(qj)[
ˆ̃J ]jĜ(qj)

T
q̇j =

ML2

τ
g̃j .
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So, rewriting equations (3.28a)- (3.28d) in terms of non-dimensional entities,

ML2

τ2
dp̃j

dt̃
= −∂(V (qj−1,qj , τ r̃j−1, τ r̃j) + V (qj ,qj+1, τ r̃j , τ r̃j+1))

∂r̃j
,

dr̃j

dt̃
=

p̃j
m̃j

,

ML2

τ2
dg̃j

dt̃
= −1

4

(
ML2

τ2

)
Ĝ(g̃j)

T [ ˆ̃J ]j
−1
Ĝ(g̃j)qj

−∂(V (qj−1,qj , τ r̃j−1, τ r̃j) + V (qj ,qj+1, τ r̃j , τ r̃j+1))

∂qj

−2λjqj ,

dqj

dt̃
=

1

4
Ĝ(qj)

T [ ˆ̃J ]j
−1
Ĝ(qj)g̃j .

We have derived Hamilton’s equations for three dimensional chain in terms of quaternion.

The main challenge in the formalism is forcing the unit quaternion constraint. We have

derived the expression for Lagrange multiplier for continuous ODEs.

After introducing this multiplier, we estimate the order of error in unit quaternion constraint.

We derive the order of error analytically for Euler-B scheme and numerically for higher order

algorithms. Also, we prove the symplecticity of the algorithm for Euler-A symplectic scheme.

We are using Gauss6 symplectic sixth order scheme to solve the chain problem, but providing

analytical proof for order of unit quaternion constraint and symplecticity of this algorithm

is bit difficult. However, this can be done in similar way as we demonstrate it for Euler-B

and Euler-A scheme.

3.4 Order and Symplecticity of constrained algorithm

Let the conjugate pairs of the Hamiltonian system be (pj , rj)j=0,1,...N+1 and (gj ,qj)j=0,1,...N+1.

Hamiltonian of the constrained system is,

H (p0,p1, . . . ,pN+1, r0, r1, . . . , rN+1,g0,g1, . . . ,gN+1,q0,q1, . . . ,qN+1) (3.34)

= H̃ (p0,p1, . . . ,pN+1, r0, r1, . . . , rN+1,g0,g1, . . . ,gN+1,q0,q1, . . . ,qN+1) +

N+1∑
j=0

λj(q
T
j qj − 1).
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where,

H̃ =

N+1∑
j=0

1

2
gj
Tµ−1(qj)gj +

N+1∑
j=0

p2
j

2mj
+

N∑
j=0

Vj,j+1(qj ,qj+1, rj , rj+1). (3.35)

Let the step size of the discretization be h. Let (·)kj denote (·) value of jth body at kth step.

When we solve for (pj , rj) and (gj ,qj), Hamiltonian is the function of these variables only.

3.4.1 Order of the constrained algorithm

Using Euler-B, a symplectic scheme, we show here, the order of error in the constraints

qTj qj = 1 and qTj gj = 0. Euler-B discretization for conjugate pair (gj ,qj) is:

qn+1
j = qnj + hH̃g(gn+1

j ,qnj ), (3.36)

gn+1
j = gnj − hH̃q(gn+1

j ,qnj )− 2λjhq
n
j . (3.37)

Using (3.28d), (3.28d) and (3.33)

H̃g(gn+1
j ,qnj ) = µ−1(qnj )gn+1

j ,

H̃q(gn+1
j ,qnj ) = µ−1(gn+1

j )qnj +
∂Ṽ

∂qj
,

λj = −1

2
qnTj

∂Ṽ

∂qj
.

where, ∂Ṽ
∂qj

is valuated at (gn+1
j ,qnj ).

Unit quaternion constraint

(qn+1
j )Tqn+1

j = {qnTj + h(gn+1
j )Tµ−1(qnj )}{qnj + hµ−1(qnj )gn+1

j }

= qnTj qNj + 2hqnTj µ−1(qnj )gn+1
j + h2(gn+1

j )Tµ−1(qnj )µ−1(qnj )gn+1
j .
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Using 3.18, we see that

qnTj µ−1(qnj )gn+1
j = 4qnTj Ĝ(qnj )T [Ĵ ]jĜ(qnj )gn+1

j

= 4qnTj Ĝ(qj)
T [Ĵ−1]Ĝ(qnj )gn+1

j

= 4[1 , 0 , 0 , 0]Ĝ(qnj )gn+1
j

= 4qnTj gn+1
j

= 4qnTj gnj +O(h). [Using3.37]

Assuming that qnTj qnj = 1 and qnTj gnj = 0, we have,

(qn+1
j )Tqn+1

j = 1 +O(h2). (3.38)

Constraint on conjugate momenta

(qn+1
j )Tgn+1

j = {qnTj + h(gn+1
j )Tµ−1(qnj )}{gnj − hµ−1(gn+1

j )qnj

−h ∂Ṽ
∂qj

+ h

(
qnTj

∂Ṽ

∂qj

)
qjn}

= qnTj gnj − h{(gn+1
j )Tµ−1(qnj )gnj + qnTj µ−1(gn+1

j )qnj }

−hqnTj
∂Ṽ

∂qj
+ hqnTj qNj

(
qnTj

∂Ṽ

∂qj

)
+O(h2).

Using (3.37) and the property

gTj µ
−1(qj)gj = qTj µ

−1(gj)qj ,

we have,

(gn+1
j )Tµ−1(qnj )gnj = (gn+1

j )Tµ−1(qnj )gn+1
j +O(h)

= qnTj µ−1(gn+1
j )gn+1

j +O(h).

Using above expression and assuming that qnTj qnj = 1 and qnTj gnj = 0,

(qn+1
j )Tgn+1

j = 0 +O(h2). (3.39)
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We conclude from equations (3.38) and (3.39) that Euler-B scheme respect the constraints

(qTj qj = 1) and (qTj gj = 0) upto second order.

For a typical symmetric top problem, we plot the error in quaternion constraint vs step size

for the higher order symplectic algorithms. In the figure 3.3, we see that all the symplectic
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Figure 3.3: Error in unit quaternion vs step size for symplectic algorithms

algorithms, second order schemes Implicit-midpoint and Stormer-Verlet, fifth order scheme

Sungeng and sixth order scheme Gauss6 respect the unit quaternion constraint upto second

order only. However, Gauss6, being a higher order algorithm, has least magnitude of error

compared to rest of the algorithms.

3.4.2 Symplecticity of the constrained algorithm

We use first order symplectic Euler-A scheme. Euler-A discretization is given by

rn+1
j = rnj + hH̃p(pnj , r

n+1
j ),

pn+1
j = pnj − hH̃r(pnj , r

n+1
j ),

qn+1
j = qnj + hH̃g(gnj ,q

n+1
j ),

gn+1
j = gnj − hH̃q(gnj ,q

n+1
j )− 2λjq

n+1
j .
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Taking one-form of the above discretization,

drn+1
j = drnj + hdH̃p(pnj , r

n+1
j ), (3.40a)

dpn+1
j = dpnj − hdH̃r(pnj , r

n+1
j ), (3.40b)

dqn+1
j = dqnj + hdH̃g(gnj ,q

n+1
j ), (3.40c)

dgn+1
j = dgnj − hdH̃q(gnj ,q

n+1
j )− 2λjq

n+1
j . (3.40d)

Using chain rule,

dH̃p(pnj , r
n+1
j ) = H̃ppdp

n
j +�

��>
0

H̃prdr
n+1
j , (3.41a)

dH̃r(pnj , r
n+1
j ) = �

��>
0

H̃rpdpN + H̃rrdr
n+1
j , (3.41b)

dH̃g(gnj ,q
n+1
j ) = H̃ggdg

n
j + H̃gqdq

n+1
j , (3.41c)

dH̃q(gnj ,q
n+1
j ) = H̃qgdg

n
j + H̃qqdq

n+1
j − 2λjdq

n+1
j − 2qn+1

j dλj . (3.41d)

Some properties of wedge products are,

da ∧ da = 0, da ∧ db = −db ∧ da, da ∧ (Ada) = (ATda) ∧ da (3.42)

From (3.40a) and (3.40b) and using (3.41a) and (3.41b),

drn+1
j ∧ dpnj = drnj ∧ dpnj + hH̃pp���

���:
0

dpnj ∧ dpnj , (3.43a)

drn+1
j ∧ dpn+1

j = drn+1
j ∧ dpnj − hH̃rr���

���
��:0

drn+1
j ∧ drn+1

j . (3.43b)

Adding above two equations,

drn+1
j ∧ dpn+1

j = drnj ∧ dpnj . (3.44)

From (3.40c) and (3.40d) and using (3.41c) and (3.41d),

dqn+1
j ∧ dgnj = dqnj ∧ dgnj + hH̃gg���

���:0
dgnj ∧ dgnj + hH̃gqdq

n+1
j ∧ dgnj ,

dqn+1
j ∧ dgn+1

j = dqn+1
j ∧ dgjn − hH̃ T

qg, dq
n+1
j ∧ dgnj − hH̃qq

���
���

��:0
dqn+1

j ∧ dqn+1
j

−2λ
��

���
���:

0
dqn+1

j ∧ dqn+1
j − 2(qn+1

j )Tdqn+1
j ∧ dλj .
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Adding above two equations,

dqn+1
j ∧ dgn+1

j = dqnj ∧ dgnj − 2(qn+1
j )Tdqn+1

j ∧ dλj .

From the equation 3.38,

(qn+1
j )Tqn+1

j = 1 +O(h2),

=⇒ (qn+1
j )Tdqn+1

j = 0.

Hence,

(qn+1
j )Tdqn+1

j ∧ dλj = 0, ∀λj .

Therefore,

dqn+1
j ∧ dgn+1

j = dqnj ∧ dgnj . (3.45)

We conclude from above subsection that addition of Lagrange multiplier successfully force the

unit quaternion constraint upto second order. We also see that addition of the constraint

term to the Hamiltonian of the system does not destroy its symplecticity. We, now have

the Hamiltonian formulation for the three dimensional chain of rigid bodies in terms of

quaternion.

3.5 Example

The figure above shows a tetrahedron with particles at its vertices attached through rigid

link. Let us assume mass of each particle to be m. Let us denote position vector of kth

particle of ith body in body fixed frame as rki .

r1i = −a
2
ei1 −

a

3
ei2 −

a

4
ei3,

r2i =
a

2
ei1 −

a

3
ei2 −

a

4
ei3,

r1i = 0ei1 +
2a

3
ei2 −

a

4
ei3,

r1i = 0ei1 + 0ei2 +
3a

4
ei3.
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1
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3
4

Figure 3.4: Rigid tetrahedron

Moment of inertia of the tetrahedron is given as

I11 =

4∑
k=1

mk(y
2
k + z2k) =

17a2

12
,

I22 =
4∑

k=1

mk(x
2
k + z2k) =

5a2

4
,

I33 =

4∑
k=1

mk(x
2
k + y2k) =

5a2

6
,

I12 = I13 = I23 = 0.

3.5.1 Potential energy

We assume Lennard-Jones potential [24] interaction between two tetrahedrons. So the po-

tential energy contribution from two particles, k, l of ith and jth body respectively is given

by

V k,l
ij = 4ε

( σ

rk,li,j

)12

−
(
σ

rk,li,j

)6
 ,

where, rk,li,j (from (3.29)) denotes distance between k particle of ith body and l particle of jth

body.
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So, potential energy contribution from pair ith and jth body is,

Vij =

4∑
k=1

4∑
l=1

V k,l
ij .

Partial differentiation of V ij with respect to ri and qi are,

∂Vij
∂ri

=
4∑

k=1

4∑
l=1

∂V k,l
ij

∂ri
,

∂Vij
∂qi

=
4∑

k=1

4∑
l=1

∂V k,l
ij

∂qi
.

∂V k,l
ij

∂ri
= −24ε

σ

2

(
σ

rk,li,j

)13

−
(
σ

rk,li,j

)7
 ∂rk,li,j
∂ri

,

∂V k,l
ij

∂qi
= −24ε

σ

2

(
σ

rk,li,j

)13

−
(
σ

rk,li,j

)7
 ∂rk,li,j
∂qi

,

where,
∂rk,li,j

∂ri
and

∂rk,li,j

∂qi
are obtained from (3.3.6) and (3.3.6) respectively.

We, solve the above example for the system containing 8 tetrahedrons, using sixth order

symplectic Gauss6 scheme for a typical initial velocity, and following parameters.

a = 1m,mass = 1kg, ri(0) = (2i, 0, 0), i = 1, 2, . . . , 8,F = (3, 0, 0), ε = 5, σ = 1.
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Figure 3.5: Energy(in J) vs number of
steps for c1-c2 boundary condition
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Figure 3.6: Energy(in J) vs number of
steps for c1-c1 boundary condition
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Figure 3.5 and 3.6 show the energy of the system for c1-c2 (clamped-constant force) and c1-

c1 (clamped-clamped) boundary condition respectively. Hamiltonian of the system remain

conserved in both the cases. Hence our formulatio of the chain problem successfully conserve

the Hamiltonian of the system.

Computation time We observe the effect of number of bodies and the effect of number of

particle in the body on computation time. We use disc shape of rigid body as the example.

Particles are assumed to be uniformly distributed on the circumference of two circles forming

faces of the disc. For a typical initial condition, parameters used are,

radius of disc a = .05m, thickness t = a/10, σ = 1, ε = 10−6,F = .03N in x direction,

where, F is the force applied at last body.

The calculation has been done using Gauss6 scheme with step size h = .01 and tolerance

10−9. The machine used is eight core “Intel(R) Xenon cpu ES420 @2.50GHz”
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Figure 3.7: Number of particle np vs
time for Number of body N =6
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Figure 3.8: Number of body N vs time
for number of particle=12

Figures clearly show the increase in computation time as number of bodies/ particles are

increased.

In order to demonstrate the accuracy of unit quaternion constraint, we plot the error in

quaternions for the system with parameters as defined above and number of bodies = 8 and

number of particles = 8.

Figure 3.9 shows that quaternions remain unit to a good extent for all the bodies in the

chain.
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Figure 3.9: Error in unit quaternion for different bodies



Chapter 4

Conclusion and Future work

4.1 Conclusion

We have successfully established a Hamiltonian formulation for a chain of rigid bodies using

Rotation matrix and quaternions as rotation parameters. We have modeled rigid bodies as

an array of particles attached to each other through rigid links. Therefore, our formulation

can be used for any shape of the rigid body.

We have introduced the Lagrangian multiplier into already existing symplectic algorithms

and have achieved a second order algorithm with respect to unit quaternion constraint.

We have also shown that introduction of the Lagrange multiplier into Hamiltonian system

does not affect the symplecticity of the system. In the figure 3.7 and 3.8, we have shown

computation time for different sets of number of particles and number of bodies. Figures

suggest that algorithm used is significantly fast and hence can be applied for large number

of bodies.

4.2 Future Work

A symplectic algorithm conserving the unit quaternion constraint upto higher order can be

devised. When the equation of motion for the chain of rigid bodies is linearized about its

equilibrium position, we are able to calculate the natural frequency of the system. This

46
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natural frequency can be used has a parameter to compare the motion of a chain of large

number of rigid bodies and a Cosserat rod.



Appendix A

Rotation matrix

A.1 Rotation matrix in terms of quaternions

Quaternions is corresponding to jth body is defined as,

qj = qj,0 + qj,1e1 + qj,2e2 + qj,3e3 (A.1)

We derive a rotation tensor R(qj) which relates basis {eji}i=1,2,3 of jth body fixed frame to

stationary frame basis {ei}i=1,2,3. Quaternions represent rotation iff their mod is unity, i.e.,

||qj ||2 = q2j,0 + q2j,1 + q2j,2 + q2j,3 = 1 (A.2)

From here onwards, we consider unit quaternion only. The quaternion can be used to describe

rotation about an axis r through an angle φ as

qj = cos
φ

2
+ sin

φ

2
r (A.3)

i.e.,

qj,0 = cos
φ

2
, qj,1 = sin

φ

2
r1, qj,2 = sin

φ

2
r2, qj,3 = sin

φ

2
r3, (A.4)

where ri is ith component of unit vector r.

Using Rodrigue’s rotation formula, if a vector v is rotated by angle φ about an axis r, then

48
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the rotated vector is given by,

vrot = v cosφ+ (r× v) sinφ+ r(r · v)(1− cosφ) (A.5)

We derive the rotation matrix corresponding to this rotation in terms of quaternion as

vrot = v cosφ+ (r× v) sinφ+ r(r · v)(1− cosφ) (A.6)

= v(2 cos2
φ

2
− 1) + 2r̃ sin

φ

2
cos

φ

2
v + 2 sin2 φ

2
(r⊗ r)v (A.7)

= Rv, (A.8)

where r̃ is the skew tensor corresponding to axial vector r and R(qj) is the rotation tensor

given by,

R = (2 cos2
φ

2
− 1)I + 2r̃ sin

φ

2
cos

φ

2
+ 2 sin2 φ

2
(r⊗ r)

= (2q2j,0 − 1)I + 2 cos
φ

2


0 −r3 sin φ

2 r2 sin φ
2

r3 sin φ
2 0 −r1 sin φ

2

−r2 sin φ
2 r1 sin φ

2 0

 (A.9)

+2


r21 sin2 φ

2 r1r2 sin2 φ
2 r1r3 sin2 φ

2

r2r1 sin2 φ
2 r22 sin2 φ

2 r2r3 sin2 φ
2

r3r1 sin2 φ
2 r3r2 sin2 φ

2 r23 sin2 φ
2

 (A.10)

Components of this tensor is represented by matrix R.

R(qj) = (2q2j,0 − 1)I + 2qj,0


0 −qj,3 qj,2

qj,3 0 −qj,1
−qj,2 qj,1 0

+ 2


q2j,1 qj,1qj,2 qj,1qj,3

qj,2qj,1 q2j,2 qj,2qj,3

qj,3qj,1 qj,3qj,2 q2j,3



=


2q2j,0 + 2q2j,1 − 1 2qj,1qj,2 − 2qj,0qj,3 2qj,1qj,3 + 2qj,0qj,2

2qj,1qj,2 + 2qj,0qj,3 2q2j,0 + 2q2j,2 − 1 2qj,2qj,3 − 2qj,0qj,1

2qj,3qj,1 − 2qj,0qj,2 2qj,3qj,2 + 2qj,0qj,1 2q2j,0 + 2q2j,3 − 1

 (A.11)
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Angular velocity ω(qj ,q̇j) is the axial vector of skew symmetric tensor ṘRT. Angular

velocity of jth body in body fixed basis {eji}i=1,2,3 is,

ωj(qj , q̇j) = axial(ṘRT) = 2G(qj)



˙qj,0

˙qj,1

˙qj,2

˙qj,3


(A.12)

where,

G(qj) =


−qj,1 qj,0 qj,3 −qj,2
−qj,2 −qj,3 qj,0 qj,1

−qj,3 qj,2 −qj,1 qj,0

 (A.13)

A.2 Euler angle and quaternions

If a frame is rotated by angle θ about axis n, then quaternion coresponding to this rotation

is given by

qn(θ) = cos θ/2 + n sin θ/2 (A.14)

We choose ZYZ class of rotation. So quaternions associating body fixed frame {ei} with

stationary frame {Ei} is given by

q = qz(φ)qy(θ)qz(ψ) (A.15)

q = (cosφ/2 + k sinφ/2)(cos θ/2 + j sin θ/2)(cosψ/2 + k sinψ/2) (A.16)

= cos
θ

2
cos

(
φ+ ψ

2

)
+ i sin

θ

2
sin

(
φ+ ψ

2

)
+j sin

θ

2
cos

(
φ+ ψ

2

)
+ k cos

θ

2
sin

(
φ+ ψ

2

)

So, the component of quaternion are,
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q0 = cos
θ

2
cos

(
φ+ ψ

2

)

q1 = sin
θ

2
sin

(
φ+ ψ

2

)

q2 = sin
θ

2
cos

(
φ+ ψ

2

)

q3 = cos
θ

2
sin

(
φ+ ψ

2

)
(A.17)

Differentiating above equations with respect to time,

q̇0 = − sin
θ

2
cos

(
φ+ ψ

2

)
θ̇

2
− cos

θ

2
sin

(
φ+ ψ

2

)
φ̇+ ψ̇

2
(A.18)

q̇1 = cos
θ

2
sin

(
φ+ ψ

2

)
θ̇

2
+ sin

θ

2
cos

(
φ+ ψ

2

)
φ̇+ ψ̇

2
(A.19)

q̇2 = cos
θ

2
cos

(
φ+ ψ

2

)
θ̇

2
− sin

θ

2
sin

(
φ+ ψ

2

)
φ̇+ ψ̇

2
(A.20)

q̇3 = − sin
θ

2
sin

(
φ+ ψ

2

)
θ̇

2
+ cos

θ

2
cos

(
φ+ ψ

2

)
φ̇+ ψ̇

2
(A.21)

Thus we obtain the angular velocity using (A.12).
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RATTLE algorithm

SHAKE/RATTLE method is used to solve constrained Hamiltonian system.

Rn+1 = Rn + hPn+1/2R−1

Pn+1/2 = Pn − h

2
VR(Rn)− hRnΛ(r)

I = [Rn+1]TRn+1

Pn+1 = Pn+1/2 − h

2
VR(Rn+1)− hRn+1Λ(v)

0 = [Rn+1]TPn+1R−1 + R−1[Pn+1]TRn+1

Symplecticity:

dRn+1 = dRn + hdPn+1/2R−1

dPn+1/2 = dPn − h

2
VQQ(Rn)dRn − hdRnΛ(r)

dPn+1 = dPn+1/2 − h

2
VQQ(Rn+1)dRn+1 − hdRn+1Λ(v)

dRn+1 ∧ dPn+1 = dRn+1 ∧ dPn+1/2

dRn+1 ∧ dPn+1/2 = dRn ∧ dPn+1/2

= dRn ∧ dPn

=⇒ dRn+1 ∧ dPn+1 = dRn ∧ dPn.

Hence this discretisation is Symplectic.
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Order of Algorithm: Order of RATTLE algorithm will be defined as minimum of order of

discretisation and order of numerical scheme solving non-linear constrained equation B.1.

We compare this discretisation with taylor series. From rattle discretisation,

Rn+1 = Rn + hPnR−1 − h2

2

(
VR(Rn) + 2RnΛ(r)

)
(B.1)

From taylor series,

Rn+1
exact = Rn + h

dR

dt

∣∣∣∣
Rn

+
h2

2

d2R

dt2

∣∣∣∣
Rn

+O(h3) (B.2)

Pn+1
exact = Pn + h

dP

dt

∣∣∣∣
Pn

+
h2

2

d2P

dt2

∣∣∣∣
Pn

+O(h3) (B.3)

{
dR

dt

∣∣∣∣
(Pn,Rn)

}
ij

= Pn
ikR

−1
kj (B.4){

d2R

dt2

∣∣∣∣
(Pn,Rn)

}
ij

=
dPn

ik

dt
R−1
kj (B.5)

= −(VR(Rn) + 2RnΛ(r))ikR
−1
kj

Using above two equations and (B.2),

Rn+1
exact = Rn + hPnR−1 − h2

2

(
VR(Rn)− 2RnΛ(r)

)
+O(h3). (B.6)

Therefore,

‖Rn+1
exact −Rn+1‖ = O(h3). (B.7)

Also,

dP

dt

∣∣∣∣
(Pn,Rn)

= −VR(Rn)− 2RnΛ (B.8)

d2P

dt2

∣∣∣∣
(Pn,Rn)

= −VQQ(Rn)PnR−1 − 2PnR−1Λ(v) (B.9)

VR(Rn+1) = VR(Rn + hPnR−1 +O(h2)) (B.10)

= VR(Rn) + VQQ(Rn)(hPnR−1) +O(h3) (B.11)
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Hence,

Pn+1
exact = Pn − h(VR(Rn) + 2RnΛ(v))−

h2

2
(VQQ(Rn)PnR−1 + 2PnR−1Λ(v)) +O(h2)(B.12)

Pn+1 = Pn − h(VR(Rn) + RnΛ(r))−
h2

2
(VQQ(Rn)PnR−1)− hRn+1Λ(v)

From above two equations,

Pn+1
exact −Pn+1 = −2hRnΛ(v) + hRnΛ(r) − h2PnR−1Λ(v) + hRn+1Λ(v) (B.13)

Hence we conclude that the Rattle algorithm is 2nd order.

Solving Constrained equation: Assuming

R̄n+1 = Rn + hPnR−1 − h2

2
VR(Rn)R−1 (B.14)

and using (B.1),

Rn+1 = R̄n+1 − h2RnΛ(r)R
−1. (B.15)

Putting above equation in (B.1)

(R̄n+1 − h2RnΛ(r)R
−1)T (R̄n+1 − h2RnΛ(r)R

−1)− I = 0 (B.16)

Let us say

f(Λ(r)) = (R̄n+1 − h2RnΛ(r)R
−1)T (R̄n+1 − h2RnΛ(r)R

−1)− I. (B.17)

Then solving (B.16) is equivalent to finding roots of f(Λ(r)). In case of multiple root and

small step size, we take Λ(r) with smaller magnitude. Newton-Raphson technique2 is used

to find roots of f(Λ(r)).
df(Λ(r))

dΛ(r)
= −2h2A, (B.18)

2see Appendix B
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where, [A]ij = [Rn]pi[R
−1]jq(R̄

n+1−h2RnΛ(r)R
−1)pq. Thus we get the iteration scheme as,

Λk+1
(r) = Λk

(r) −
(
df(Λ(r))

dΛ(r)

)−1
∣∣∣∣∣
Λk

(r)

f(Λk
(r)) (B.19)

For initial guess Λ0
(r), we solve for the linear terms of (B.1),

0 = [R̄n+1]T [R̄n+1]− I− h2{[R̄n+1]TRnΛ(r)R
−1 + R−TΛT

(r)R
nT R̄n+1} (B.20)

+h4R−TΛT
(r)R

nTRnΛ(r)R
−1 (B.21)

From (B.16), we see that [R̄n+1]TRn = RnT R̄n+1 = I +O(h). Ignoring h3 and higher order

terms in (B.21) and using symmetry of R−1 and Λ(r),

0 ≈ [R̄n+1]T [R̄n+1]− I− h2{Λ(r)R
−1 + R−1Λ(r)} (B.22)

Thus we get initial guess of Λ(r) as

Λ0
(r),ij =

1

h2
RiiRjj

Rii + Rjj
([R̄n+1]T [R̄n+1]− I)ij (B.23)

After getting Rn+1, we solve for Λ(v) using (B.1) and (B.1). Let us say

P̄n+1 = Pn+1/2 − h

2
VR(Rn+1) (B.24)

0 = [Rn+1]TPn+1R−1 + R−1[Pn+1]TRn+1 (B.25)

= [Rn+1]T P̄n+1R−1 + R−1[ ¯Pn+1]TRn+1 (B.26)

−h{Λ(v))R
−1 + R−1Λ(v)} (B.27)

Thus, Λ(v) = {λij}, R = {rij} and M = [Rn+1]T P̄n+1R−1 + R−1[ ¯Pn+1]TRn+1

λij =
riirjj

h(rii + rjj)
Mij (B.28)
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Proof of Lemma 1

We write angular velocity ωj as R4 vector,

ω̂j(qj , q̇j) = [0 ωT ]T = 2Ĝ(qj)4×4[q̇j ],

where, q̇j = [q̇j,0, q̇j,1, q̇j,2, q̇j,3]
T and

Ĝ(qj)4×4 =



pT

v1
T

v2
T

v3
T


,

where, p, v1, v2 and v3 are vectors in R4. Vectors v2 and v3 are defined as


v1

T

v2
T

v3
T

 = G(qj) =


−qj,1 qj,0 qj,3 −qj,2
−qj,2 −qj,3 qj,0 qj,1

−qj,3 qj,2 −qj,1 qj,0

 .
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Augmented inertia matrix is

[Ĵ ]j =



1 0 0 0

0 J j1 0 0

0 0 J j2 0

0 0 0 J j3


. (C.1)

We want p to be such that it is perpendicular to q̇j (to ensure that first entry of aug-

mented angular velocity ω̂j remain 0) and p is not in span of v1,v2 and v3 (to ensure that

Ĝ(qj)
T [Ĵ ]jĜ(qj) remain invertible). We have v4 = [qj,0 qj,1 qj,2 qj,3]

T perpendicular to v1,v2

and v3. So the general expression for p not in span of v1,v2 and v3 is

v = α1v1 + α2v2 + α3v3 + α4v4, α4 6= 0.

p is perpendicular to q̇j , i.e.,

pT q̇ = α1v1
T q̇+ α2v2

T q̇+ α3v3
T q̇+ α4v4

T q̇ = 0. (C.2)

Since qTj qj = 1, at least one among qj,0, qj,1, qj,2 and qj,3 is non-zero. Let us assume that

qj,3 6= 0, then from the constraint qTj q̇j = 0,

q̇j,3 = − 1

qj,3
(qj,0q̇j,0 + qj,1q̇j,1 + qj,2q̇j,2).

Substituting qj,3 in C.2,

˙qj,0(α1(−qj,1qj,3 + qj,2qj,0) + α2(−qj,2qj,3 − qj,1qj,0) + α3(−q2j,3 − q2j,0))

+ ˙qj,1(α1(qj,0qj,3 + qj,2qj,1) + α2(−q2j,3 − q2j,1) + α3(qj,2qj,3 − qj,0qj,1))

+ ˙qj,2(α1(q
2
j,3 + q2j,2) + α2(qj,0qj,3 − qj,1qj,2) + α3(−qj,1qj,3 − qj,0qj,2)) = 0.

Since this is true for all values of ˙qj,0, ˙qj,1 and ˙qj,2, their coefficients must be zero. Therefore


qj,2qj,0 − qj,1qj,3 qj,2qj,3 − qj,1qj,0 −q2j,3 − q2j,0
qj,0qj,3 + qj,2qj,1 −q2j,3 − q2j,1 qj,2qj,3 − qj,0qj,1

q2j,3 + q2j,2 qj,0qj,3 − qj,1qj,2 −qj,1qj,3 − qj,0qj,2



α1

α2

α3

 = 0.
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Only trivial solution is possible for above system of linear equations. We obtain similar result

with cases qj,0 6= 0,qj,1 6= 0 and qj,2 6= 0 respectively. So, the vector p = α4v4. We take

α4 = 1 and write

Ĝ(qj) =



qj,0 qj,1 qj,2 qj,3

−qj,1 qj,0 qj,3 −qj,2
−qj,2 −qj,3 qj,0 qj,1

−qj,3 qj,2 −qj,1 qj,0


. (C.3)
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