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Abstract

In biological structures, charged proteins that are constrained to a surface

are ubiquitously encountered. These proteins interact among each other to main-

tain their shapes and drive the functionality of the overall structure. Among

the various such situations, we particularly focus on mature HDL (high density

lipoprotein) molecules which are key components of Reverse Cholesterol trans-

port that regulate the cholesterol level in our body. Mature HDL molecules are

spheroidal shells with cholesterol encapsulated in their core, the outer shell be-

ing constituted of head groups of lipid molecules and charged proteins that are

present on the outer surface of it. How these charged proteins arrange them-

selves on the surface of the sphere could be of key importance in the functionality

of HDL molecules.

In our study, we model charged curves that are restricted to the surface of

a rigid sphere. Our model consists of two interacting, inextensible elastic loops

(closed curves) that are constrained to lie on a sphere. Each loop is endowed

with bending energy, a distance-dependent self-interaction energy, and a distance-

dependent energy that accounts for interactions with the other loop. The first

and second variation conditions are obtained in coordinate-free form. A trivial

equilibrium solution exists for such a problem in form of a pair of parallel circular

loops situated in opposite hemispheres. We discuss how the interplay between

the electrostatic interactions of the loops and their bending rigidity governs the

stability of the trivial solution. Motivated by the understandings developed with

this analysis, we solve the equilibrium equations numerically and obtain the post-

buckled equilibrium configurations.
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Chapter 1 Introduction

In biology and in polymer sciences, we can find situations where there

are charged loops interacting with oppositely charged surfaces and the medium

around those surfaces. Peptide adsorption on a lipid membrane is one classic

example. In particular, anti-microbial peptides (amps) are one of the important

component of the immune system of eukaryotic and prokaryotic cells. The initial

step in the action of amps against microbes involves their electrostatic attach-

ment to the oppositely charged microbial membranes (Yang et al. [10]). Hancock

and Rozek [11] discuss various aspects of amps activities against microbes. An-

other example for Eukaryotic cells is a negatively charged DNA strand wrapped

around a positively charged surface of a histone octamer (Nelson and Cox [12,

Chapter 24]). The complexes that are formed after this interaction of DNA with

histone proteins act as fundamental building blocks for the compactification of ge-

netic material in chromatin (Khrapunov et al. [13], Shiessel [14], Luger et al. [15]).

We aim to gain mechanistic insights into the interaction between charged

curves that are attached to a surface. We assume that curve-surface interactions

are strong enough and hence the curves are always constrained to the surface.

We motivate our work through two examples that are discussed in the sections

below.

1.1 Reverse Cholesterol Transport

Heart diseases are one of today’s primary health concerns. The types of ab-

normalities which could be referred to as heart disease are blood vessels diseases

such as coronary heart disease; arrhythmias that is heart rhythm issues; and by

birth heart defects such as congenital heart defects.
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Figure 1.1: Schematic of cholesterol deposition in the arteries ( from Rsocial) .

The most prominently studied heart disease is Atherosclerosis which refers

to as narrowing of blood vessels and under advanced stages, blocking of the

blood vessels. The narrowing of the blood vessels happens through deposition of

cholesterol and its derivatives in the arteries and is depicted in the schematic 1.1.

The two key components shown are; HDL - High density lipoprotein and LDL

- Low density lipoprotein. The HDL is also called good cholesterol and LDL is

called bad cholesterol. While the HDL molecules are carriers of cholesterol to the

liver where it is decomposed, LDL molecules which are relatively larger in size,

deposit in the artery walls and reduces the opening of arteries.

Reverse Cholesterol Transport (RCT) is the intrinsic mechanism in our body

that regulates the cholesterol level in the blood stream and reduce the chances

of cardiovascular diseases. It involves multiple steps and is mediated by various

enzymes. Review article by Remaly, Norata, and Catapano detail the key steps

involved in RCT in the Figure 1.2 and their description of RCT pathways is as

follows. The first step begins with the formation of nascent Preb-HDL, which

largely occurs in the liver and to a lesser degree in the intestine, when apoA-

I lipoproteins acquires phospholipid and a small amount of cholesterol by the

ABCA1 transporter. Preb-HDL is then transformed into a larger discoidal species

2
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of HDL called a4 HDL when it acquires additional lipid by ABCA1 transporters

in the periphery. HDL is then transformed into spherical a1-3 forms of HDL after

acquiring additional lipid by other transporters and proteins on cell membranes,

such as ABCG1 or SR-BI, or by a passive diffusion process. LCAT is involved

in this process by converting cholesterol to cholesteryl esters, which migrate into

the core of HDL. Cholesterol on HDL can be delivered directly to the liver after

uptake by SR-BI, which then regenerates Preb-HDL. Alternatively, cholesteryl es-

ter is transferred in exchange for triglycerides to VLDL and LDL by CETP and

LDL is eventually delivered to the liver by the LDL-receptor. Cholesterol is then

excreted by the liver either as free cholesterol or is converted to a bile salt.

Figure 1.2: Diagram of the Reverse Cholesterol Transport(RCT) pathway. The de-
scription and the figure are obtained from Remaly, Norata and Cata-
pano [1] .
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Figure 1.3: Simplified steps of the Reverse Cholesterol Transport (RCT) due to
Shih, Sligar and Schulten [2].

In brevity, the RCT cycle can be summarized in three key steps, shown in the

Figure 1.3 as

(a) A thread like protein called apoA-I lipoprotein which has cholesterol bind-

ing properties, is secreted from liver in the blood stream,

(b) Formation of a disc like unit which is made up of a lipid bilayer with choles-

terol embedded in it. The red component shown in the figure is made

up of phospholipids and the blue dots signify the embedded cholesterol

molecules. The edge of the layer is constituted by the apoA-I lipoprotein.

This unit is also called discoidal HDL,

(c) Esterification of the cholesterol molecule through lecithin cholesterol acyl-

transferase (LCAT) drives it to move into the lipid bilayer. This results in

the structural transition from discoidal HDL particle to the spherical HDL

which is also known as mature HDL particle. The spherical HDL then floats

back into the liver where it is decomposed.

Mature stage of HDL (stage (c)) consists of a spherical core of entangled

esterified cholesterol and Trigycerides (TG). This core is encapsulated by a spher-

ical shell made up from phospholipids aligned in a fashion such that the outer

surface is formed by the headgroups and the tails are pointing toward the core.
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Figure 1.4: Heterogeneity in the physicochemical properties of normal functional
HDL due to John et al. [3], Blanche et al.[4], Barter et al. [5], Kontush
et al. [6].

On the outer surface of this shell are the apoA-I lipoprotein which supposedly

acts as a scaffold for the interaction of mature HDL with the enzymes (Mishra et

al. [16]) and providing stability to the overall structure. The size and content of

the spherical HDL varies largely as shown in the figure 1.4 .

One crucial difference between the discoidal HDL (stage b) and spherical

HDL (stage c), apart from differences in the structure is the role of apoA-I lipopro-

tein in the two entities. In discoidal HDL, the apoA-I lipoproteins forms the edge

of the bilayer to protect the hydrophobic tails of lipids forming the bilayer.

In mature HDL, the outer surface of mature HDL is formed by hydrophilic

headgroups of the lipid molecules. This structure provides the shield to hy-

drophobic entities like tail of the lipids, and the core consisting of esterified

cholesterol molecules, tryglycericeds (TG) etc. Therefore, apoA-I lipoproteins that

lay on the surface of mature HDL are free from the role of providing the hy-

drophobic shield. Hence, they can be assumbed to float on the spherical surface.

5



Silva and coworkers [17–19], Mei and Atkinson [20], and Gursky [21] stud-

ied the crystal structure of apo-lipoprotein on the surface of HDL particles. Their

work shows that multiple peptides wrap around the surfaces of HDL particles in

various configurations. Vattulainen et al. [7] performed coarse-grained molecular

dynamics simulations to study the structure and dynamics of spherical high den-

sity lipoprotein (HDL). They studied both, a lipid droplet without the apolipopro-

tein A-I (apoA-I lipoproteins) and the full HDL particle including two apoA-I

lipoproteins molecules surrounding the lipid compartment as shown in the fig-

ure 1.5. . Dark gray stands for POPC headgroup and dark brown for PPC head-

groups, light gray for POPC hydrocarbon chains, light brown for PPC chains, light

orange for CHOL OH-groups, bright yellow for cholesterol body, dark orange for

esterified cholesterol (CE) ester bond, orange for CE ester body and chain, dark

green for TG ester bonds, and bright green for TG chain. In HDL, proline residues

in apoA-I lipoprotein sequences are in green. They inferred that the hydrophobic

residues of apoA-I lipoproteins interact with the lipid tail groups and the choles-

terol molecule present in the HDL. These specific bindings restrict the apoA-I

lipoproteins to the outer surface of HDL.

Our work is a first step toward modeling the configuration of the charged

apoA-I lipoproteins on the surface of mature HDL. We consider charged loops

that are inextensible and are endowed with bending stiffness. The loops are re-

stricted to stay on the sphere but they are allowed to float along the surface. These

assumptions capture the essential features exhibited by the apoA-I lipoproteins in

the mature HDL.
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Figure 1.5: Example of a protein-free lipid droplet (left), its molecular distribution
shown through a slice across the particle (middle), and HDL including
two apoA-I lipoproteins (right) due to Vattulainen et al. [7].

1.2 Polyelectrolyte Nano Containers

The adsorption of polyelectrolytes on oppositely charged surfaces is of cen-

tral importance in colloidal science. There is a growing interest in methods for

fabricating coated nanoparticles and polyelectrolyte shells by the sequential de-

position of polyelectrolyte chains on tailored surfaces. Decher [22–25] devised

techniques of depositing alternate layers of opposite charged polyelectrolytes on

flat support. Caruso et al. [26] and Gittins and Caruso [27] fabricated polyelec-

trolyte shells by depositing the polyelectrolytes on dissolvable spherical core.

Sukhorukov et al. [8] synthesized thin organic films by the stepwise depo-

sition of polyelectrolyte chains on dissolvable spherical cores as shown in the

figure 1.6. Shells that remain after core dissolution have been used as containers

for macromolecules, microcarriers, and microreactors.

Processes of adsorption of single charged polymers onto a surface occur in

a wide variety of applications and have been studied extensively. Goeler and

Muthukumar [28] combined a variational procedure to probe the adsorption of

single polyelectrolytes on cylindrical and spherical surfaces. In their unified de-

scription for adsorption of polyelectrolyte chains onto planar and curved surfaces,

Cherstvy and Winkler [29] highlighted the role of surface curvature on scaling

laws for adsorption. A comprehensive list of the theoretical work on this topic
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Figure 1.6: Scanning electron microscope (SEM) micrographs of melamine
formaldehyde (MF) particles coated with nine layers (Sodium
poly(styrene sulfonate) and poly(allylamine hydrochloride)) prior to
the dissolution of the core (a) and of the remaining polyelectrolyte
shell after removal of the core at pH 1.3 (b). The scale bar corresponds
to 1 nm. This figure is taken from work of Sukhorukov et al. [8].

appears in the review articles by Netz and Andelman [30], Dobrynin and Rubin-

stein [31], and Messina [32]. Monte-Carlo simulations conducted by Kong and

Muthukumar [33] confirm the theoretical predictions of scaling laws of adsorp-

tion. Results from other simulations are summarized in the review article by

Messina, Holm and Kremer [34].

Stoll and Chodanowski [9] used Monte–Carlo simulations to study the ad-

sorption of a semi-flexible polyelectrolyte onto a oppositely charged rigid sphere.

They investigated the adsorption/desorption limit and conformation of the ad-

sorbed polyelectrolyte while including the effect of charge density of the poly-

electrolyte, its bending rigidity, and the ionic concentration of the solution. The

interplay between these effects govern the adsorption limit and the confirmation

of adsorbed chain on the sphere. In the figure 1.7, configurations of the ad-

sorbed polyelectrolyte chain for different values of the stiffness of the chain and

ionic strength of the solution are shown. The ionic strength of the solution, via
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Figure 1.7: Effect of ionic concentration of the solution and bending stiffness of the
polyelectrolyte on its adsorption onto the sphere. The ionic strength
of the solution and the bending rigidity of the chain are respectively
denoted by Cl and κang. This figure is due to Stoll and Chodanowski
[9].

the screening effect, governs the electrostatic interaction of the chain with itself,

with the solution and with the sphere. The bending stiffness and the electrostatic

self repulsions among the monomers of the polyelectrolyte drives it to adopt ex-

tended conformations and limit the number of monomers that may be attached

to the sphere. In contrast, the attractive interaction between the polyelectrolyte

monomers and the sphere induces the chain to undergo a structural transition

and attach to the sphere. The effect of curvature energy is demonstrated by in-

creasing the intrinsic rigidity, in which case a transition from a disordered and

strongly bound complex to a situation where the polymer touches the particle

over a finite length, while passing by the formation of a more ordered, solenoid

conformation.

The majority of the existing literature on polyelectrolyte adsorption focuses
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on single chains because intrachain interactions dominate interchain interactions

in most systems of importance (Dobrynin and Rubinstein [31]).

Although our model consists of two charged closed curves, our frame work

can be easily specialized to yield the equilibrium and stability condition for a

single, open, charged curve. However, our model is unable to handle the situation

where a portion of the curve is allowed to leave the surface of sphere, as shown

in some of the cases in the figure 1.7.

A brief outline of the following chapters is as follows. In chapter 2, we

provide brief description of the differential geometry of space curves and the ter-

minologies that are commonly used in the literature. In chapter 3, we describe the

main framework of our model. We introduce the necessary geometrical quanti-

ties, the notation, and the assumptions. The first and second variation conditions

satisfying the energy stability criterion are presented. In chapter 4, we apply the

framework developed in chapter 3 to a special case where we characterize the in-

teraction of two uniformly charged loops that have the same length and material

parameters. The trivial equilibrium solution to that special problem is presented.

Bifurcations from that trivial solution are identified and associated stability crite-

ria are obtained. Explanation of how the geometric and material parameters effect

the stability of the trivial solution are provided. In chapter 5, we solve the equi-

librium equations derived for the special case in chapter 4 numerically and obtain

the non-trivial equilibrium solutions. In chapter 6, we provide the summary of

our results and future directions of our work. For completeness, Appendix con-

tains detailed accounts of the calculations that provide the foundations for our

analysis.
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Chapter 2 Differential Geometry of

Curves

In this chapter, we provide some useful tools to describe a curve in 3-dimensional

space and key references for comprehensive understanding of the subject. The

material presented in this chapter is adopted from the book titled Differential Ge-

ometry of Curves and Surfaces [39] by Professor MP do Carmo.

A parameterized curve is a differentiable map r : I → R3 that takes a one

dimensional variable t ∈ I as an input and yields a 3-dimensional output r(t) ∈
R3, where I is a subset of R. At each point of the curve, an orthonormal basis also

called frame of the curve can be associated that describes how the curve evolves

in the space. Below are some of the useful frames that are commonly used.

2.1 Frénet Frame

For a space curve parameterized as r : I→ R3, tangent vector, normal vector,

and binormal vector defined respectively as

T(t) =
r′(t)
|r′(t)| , N(t) =

T ′(t)
|T ′(t)| , and B(t) = T(t)× N(t), (2.1)

at each point r(t) form an orthogonal basis called Frénet -frame which was given

independently by two French mathematicians Jean Frédéric Frénet [35] and Joseph

Alfred Serret ([36], [37]).

Two scalar quantities that characterize a curve in space, curvature and torsion

of the curve, are given as

κ(t) =
|T ′(t)|
|r′(t)| =

|r′(t)× r′′(t)|
|r′(t)|3 , and τ(t) =

N ′(t) · T(t)
|r′(t)| =

r′′′ · (r′ × r′′)
|r′(t)× r′′(t)|2 ,

(2.2)
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respectively. While curvature κ measures the change in direction of the unit tan-

gent T , torsion τ measures tendency of the curve to deviate out of its current

plan which is spanned by vectors T and N. The derivative of T , N, and B can be

written in terms of these vectors, curvature κ and torsion τ as

T ′ = κ|r′|N, N ′ = −κ|r′|T + τ|r′|B, and B′ = −τ|r′|N. (2.3)

These relations are also called as Frénet -Serret formula or structure equations.

In mechanics, it is a standard practice to use arc-length parameterization of

the curve instead of an arbitrary parameter t as used in the above paragraphs. Let

a curve of length L be parameterized with arc-length s ∈ [0, L] in which case,

|r′(s)| = 1. (2.4)

which is a common knowledge in the literature and is referred to as unit speed

curve. Now, using this parameterization, the relations (2.1), (2.2), and (2.3) sim-

plify as

T = r′, N =
T ′

|T ′| , and B = T × N, (2.5)

κ = |T ′| = |r′′|, and τ = N ′ · T =
r′′′ · (r′ × r′′)
|r′′|2 , (2.6)

and

T ′ = κN, N ′ = −κT + τB, and B′ = −τN, (2.7)

respectively, where the derivatives are taken with respect to arc length s. The

Frénet -Serrate relation (2.7) is also written in a matrix form as



T

N

B




′

=




0 κ 0

−κ 0 τ

0 −τ 0







T

N

B




.

Frénet frame fails to describe a curve when the tangent t is a constant such that

T ′ = 0 in which case, the normal vector N is arbitrary.
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2.2 Darboux Frame

Consider a surface S and an arc-length parameterized curve r on it. At each

point of the curve, we find that

• Unit tangent to the curve, t = r′,

• Unit normal to the surface, n, and,

• Tangent-normal vector g = t × n which is tangent to the surface S and

normal to the curve r

form an orthonormal frame {t, n, g} known as Darboux frame which was pro-

posed by French mathematician Jean Gaston Darboux [38].

Differentiating the relation |r′| = 1 with respect to arc length s yields

r′ · r′′ = 0, (2.8)

which implies that the total curvature of the curve, κ = r′′ is in the plane formed

by vector n and g and can be written as

κ = r′′ = κnn + κgg. (2.9)

The quantities κn and κg are called normal curvature and geodesic curvature of

the curve r on S , respectively. A curve on the surface S is geodesic if κg = 0. Thus,

geodesic curvature measures how far away is the curve from being a geodesic.

Derivative of the Darboux frame vectors can be written in similar fashion as

the Frénet -Serret formula described in (2.7) as



t

n

g




′

=




0 κn κg

−κn 0 −τg

−κg −τg 0







t

n

g




,
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where τg is called geodesic torsion of the curve. Given a Darboux frame {t, n, g},
the scalar quantities κn, κg, and τg can be derived as

κn = −n′ · t, κg = t′ · g, and τg = −n′ · g. (2.10)

The normal curvature κn depends only on the shape of the surface S and the

direction in which the curve is traveling on it. Following this argument, Darboux

frame naturally encodes the information about the shape of the surface. In con-

trast, the Frénet -Serret frame has no such information. Therefore, for describing

a curve that is constrained to a surface, Darboux frame is a more suitable choice

over Frénet -Serret frame.

2.3 Description of a curve constrained to a sphere

In this section, we show how the Darboux frame described in the previous

section specialize in the case where the surface S is a sphere. Without loss of

generality, consider a sphere of radius R with origin being center of the sphere.

Let C be a curve of length L constrained to S which can be parameterized as

C = {r : r = Rn(s), 0 ≤ s ≤ `}, (2.11)

where s is the arc length (dimensionless) which is obtained by scaling the arc

length with radius R and ` = L
R is the dimensionless length of the curve, and n is

the unit normal to the surface of the sphere S pointing outwards. So, in the par-

ticular situation where surface is a sphere, the position vector of the curve r and

the normal to S , Rn coincide. The Darboux frame vectors t and g, respectively

are given as

t = n′ and g = n′ × n, (2.12)
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where the derivatives here, and henceforth in this section are with respect to the

dimensionless arc length s. The total curvature of the curve C is given as

κ =
1

R2
dr
ds2 =

n′′

R
. (2.13)

The normal curvature, geodesic curvature and the geodesic torsion are given as

κn = − 1
R

dn
ds
· t = −n′ · n′

R
= − 1

R
, (2.14)

κg =
1
R

dt
ds
· g =

n′′ · (n′ × n)
R

, and (2.15)

τg = − 1
R

n′ · g = 0, (2.16)

where n′ is derivative of n with respect to dimensionless arc length s. We conclude

from (2.16) that the geodesic torsion of a curve constrained to a sphere is 0.
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Chapter 3 Variational framework for

charged curves on a sphere

3.1 Introduction

In the present work, we consider a system consisting of two semi-flexible,

charged loops that are constrained to lie on a sphere. Semiflexibility implies that

persistence length of the polymers represented through these charged loops sub-

stantially exceeds the length of its constituent monomers. For such polymers, the

energetics of bending decouples from the minutiae of the chemical structure and

can thus be described to good accuracy by a continuum-level elastic model. The

literature contains many relevant theoretical works on elastic loops constrained

to spheres. In a pioneering work, Langer and Singer [40] used a variational ap-

proach to study the shape of a closed, inextensible loop restricted to a spherical

surface. They considered a simple model in which the bending energy per unit

length of the loop is proportional to the square of its curvature. Working with a

generalization of that energy, Arroyo et al. [41–44] analyzed the existence and sta-

bility of loops on a spherical surface and determined the conditions under which

an open loop closes into a loop.

In an effort to model a DNA molecule that exhibits non-local, long-range

interactions between its base pairs, Biton et al. [45] explored the three-dimensional

equilibrium configurations of a electrically charged loop endowed with bending

stiffness. They developed a numerical method that deals effectively with the full

Jacobian of the equilibrium configuration that stems from the nonlocal self energy

of the system. Hoffmann and Manning [46] studied the equilibrium shape and

stability of a open loop that is constrained to lie in a plane an is endowed with
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bending stiffness and repulsive self energy, focusing on the challenges related to

the singularity that is generated by the self energy of the loop.

The simplest mathematical expression for the self energy of a closed loop of

length L with distributed charge density ρ and arclength parameterized position

vector r is proportional, by Coulomb’s constant, to the divergent integral

1
2

∫ L

0

∫ L

0

ρ(s)ρ(s̄)ds ds̄
|r(s)− r(s̄)| . (3.1)

Renormalization techniques have been used to circumvent the divergence arising

from the interaction potentials. Fukuhara [47] considered a discretized version of

(3.1) that is bounded. Birman and Lomonaco [48] replaced the distance |r(s) −
r(s̄)| in the denominator of the integrand in (3.1) by |r(s)− r(s̄)|+ ε, with ε > 0,

to obtain a finite self energy. Other regularization approaches include subtracting

from (3.1) an equally divergent term or multiplying the integrand of (3.1) by a

factor that decays sufficiently rapidly as s̄→ s. In a series of papers, O’Hara [49–

51] used the subtractive approach to calculate the self energy of charged knots.

Kushner and Sullivan [52] used a multiplicative factor to regularize the inverse

power-law that governs the self energy of a charged Möbius band. Hoffmann and

Manning [46] used a mollifier with decay such that the self energy of a charged

rod is mollified up the second variation of the energy functional.

Building on the works mentioned above, we present a variational framework

for studying the interaction between two charged loops that are constrained to

a sphere (Figure 3.1). We restrict attention to inextensible loops. Moreover, for

simplicity, we follow Langer and Singer [40] by endowing each loop with bend-

ing energy with density proportional to the square of its curvature. We limit our

study to situations in which the self and interaction energies of the loops are re-

pulsive. Moreover, we use multiplicative approach to regularize the self energy

of the curves for uniformly charged loops in chapter 4. On the basis of these

simplifying assumptions, we explore the competition between bending resistance
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and repulsive interactions, in conjunction with the geometric constraints, to de-

termine energetically preferred equilibrium configurations, the goal being to to

explain how these various effects influence the stability of equilibrium config-

urations and thereby provide insight on the equilibrium phenomena that occur

subsequent to adsorption of polyelectrolyte on the curved surface. Although we

do not study the equilibrium shape of a single charged polyelectrolyte deposited

on a sphere, our framework can also be applied to such problems.

The remainder of this chapter is organized as follows. The necessary geomet-

rical quantities, notation, and assumptions are introduced in §3.2. The first and

second variation conditions satisfying the energy stability criterion are presented

in §3.3. Summary of this chapter is provided in §3.5.

3.2 Preliminaries

Consider (closed) inextensible loops C1 and C2 of respective lengths L1 = R`1

and L2 = R`2 confined to a sphere S of radius R, as illustrated in Figure 3.1. We

suppose that each loop is endowed with a bending energy with density propor-

tional to the square of its curvature and with a self energy with density dependent

on the distance between pairs of its points. Additionally, we assume that interac-

tions between the loops are characterized by an energy with density dependent

on the distance between pairs of their points.

3.2.1 Kinematics

Without loss of generality, we place the origin at the center of the sphere S
and parameterize each loop Ci by

Ci = {r : r = Rni(s), 0 ≤ s ≤ `i}, (3.2)
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C1

C2

R

S

t1

g1

n1

Figure 1: Schematic of two inextensible closed loops C1 and C2 of length L1 = R`1 and L2 = R`2 confined to a sphere S of
radius R. The Darboux frames {t, n, g} of C1 and C2 are also depicted.

with density proportional to the square of its curvature. We limit our study to situations in which the self
and interaction energies of the loops are repulsive. Moreover, we use multiplicative approach to regularize
the self energy of the curves. On the basis of these simplifying assumptions, we explore the competition
between bending resistance and repulsive interactions, in conjunction with the geometric constraints, to
determine energetically preferred equilibrium configurations, the goal being to to explain how these various
e↵ects influence the stability of equilibrium configurations and thereby provide insight on the equilibrium
phenomena that occur subsequent to adsorption of polyelectrolyte on the curved surface. Although we do
not study the equilibrium shape of a single charged polyelectrolyte deposited on a sphere, our framework
can also be applied to such problems.

The remainder of the paper is organized as follows. The necessary geometrical quantities, notation, and
assumptions are introduced in §2. The first and second variation conditions satisfying the energy stability
criterion are presented in §2.4. The framework developed in §2.4 is applied, in §3, to characterize the
interaction of two uniformly charged loops that have the same length and material parameters. The trivial
equilibrium solution to that special problem is presented in 3.3. Bifurcations from that trivial solution are
identified in 5 and associated stability criteria are obtained in 4. Explanation of how the geometric and
material parameters e↵ect the stability of the trivial solution are provided in §4. A summary of our results
appears in §6. For completeness, Appendix A contains detailed accounts of the calculations for the first and
second variation conditions that provide the foundations for our analysis.

2. Preliminaries

Consider (closed) inextensible loops C1 and C2 of respective lengths L1 = R`1 and L2 = R`2 confined to
a sphere S of radius R, as illustrated in Figure 1. We suppose that each loop is endowed with a bending
energy with density proportional to the square of its curvature and with a self energy with density dependent
on the distance between pairs of its points. Additionally, we assume that interactions between the loops are
characterized by an energy with density dependent on the distance between pairs of their points.

3

Figure 3.1: Schematic of two inextensible closed loops C1 and C2 of length L1 =
R`1 and L2 = R`2 confined to a sphere S of radius R. The Darboux
frames {t, n, g} of C1 and C2 are also depicted.

where s represents (dimensionless) arclength on Ci, i = 1, 2, and ni is normal to

S , directed away from the origin, and three-times continuously differentiable. As

consequences of this smoothness assumption, we have the closure conditions

ni(0) = ni(`i), n′i(0) = n′i(`i), n′′i (0) = n′′i (`i), and n′′′i (0) = n′′′i (`i), i = 1, 2,

(3.3)

where a prime denote differentiation with respect to s on Ci, i = 1, 2. To ensure

that each loop Ci, i = 1, 2, conforms to S and is inextensible, we stipulate that

|ni| = 1 and |n′i| = 1. (3.4)

From (3.2), the vector curvature κi of each loop Ci, i = 1, 2, is given by

κi =
1
R

n′′i . (3.5)

It is convenient to decompose the vector curvatures into geodesic and normal

components. To achieve this, we adopt the convention that the curvature of S is
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negative, in which case each loop Ci, i = 1, 2, has normal curvature −1/R and its

vector curvature κi can be expressed as

κi =
1
R
(1 − ni ⊗ ni)n′′i −

ni

R
. (3.6)

Differentiating (3.4)1 with respect to arclength, we see that on Ci, i = 1, 2,

n′i · ni = 0. (3.7)

By (3.4) and (3.7), the triad {n′i, ni, n′i × ni} provides an orthonormal basis — its

Darboux frame — on Ci, i = 1, 2. Defining ti and gi on Ci, i = 1, 2, by

ti = n′i and gi = ti × ni, (3.8)

we thus recognize from (3.6) that t′i can be expressed as

t′i = n′′i = −ni − kigi, (3.9)

where ki determined according to

ki = −n′′i · gi = −t′i · gi = g′i · ti (3.10)

is the dimensionless geodesic curvature of Ci, i = 1, 2. Since gi · ti = 0 on Ci,

i = 1, 2, we see from (3.10) that

g′i = kiti. (3.11)

Since g′i · ni = (gi · ni)
′ − gi · n′i = gi · ti = 0 and the geodesic torsion of Ci, i = 1, 2,

is g′i · ni/R, (3.11) is consistent with the established fact that the geodesic torsion

of a curve on a sphere must vanish. When augmented by given choices ti(0),

ni(0), and gi(0) of ti, ni, and gi, we may integrate the system

t′i = −kigi − ni, n′i = ti, g′i = kiti, (3.12)

to uniquely determine the shape of Ci, i = 1, 2, on S .
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3.2.2 Energetics

We assume that the total energy E of the system consisting of the loops C1

and C2 can be expressed as a sum,

E = EB + ES + EI, (3.13)

of contributions EB, ES, and EI that account respectively for bending energy, self

energy, and interaction energy. For simplicity, we stipulate that the extent to

which Ci, i = 1, 2, resists bending is characterized by a single constant bending

modulus µi, so that EB has the particular form

EB[n1, n2] =
µ1

2

∫ `1

0
|κ1(s)|2 ds +

µ2

2

∫ `2

0
|κ2(s)|2 ds. (3.14)

It is natural to decompose EB into terms associated with the geodesic and normal

components of the vector curvature κi of each loop Ci, i = 1, 2. With reference to

(3.6) and (3.9), this leads to the representation

EB[n1, n2] =
µ1

2

∫ `1

0

∣∣∣κ1(s) +
1
R

n1(s)
∣∣∣
2

ds +
µ2

2

∫ `2

0

∣∣∣κ2(s) +
1
R

n2(s)
∣∣∣
2

ds

− µ1`1 + µ2`2

2R

=
µ1

2R

∫ `1

0
k2

1(s)ds +
µ2

2R

∫ `2

0
k2

2(s)ds− µ1`1 + µ2`2

2R
, (3.15)

where the term −(µ1`1 + µ2`2)/2R, being a constant, is of no consequence. Fur-

thermore, we stipulate that ES has the form

ES[n1, n2]

=
A11

2

∫ `1

0

∫ `1

0
f (|n1(s)− n1(s̄)|)ds̄ ds +

A22

2

∫ `2

0

∫ `2

0
f (|n2(s)− n2(s̄)|)ds̄ ds,

(3.16)

and that EI has the form

EI[n1, n2] =
A12

2

∫ `1

0

∫ `2

0
h(|n1(s)− n2(s̄)|)ds̄ ds, (3.17)
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where A11, A22, and A12 are constants with dimensions of energy per unit area,

f is the dimensionless self interaction energy density and h is the dimensionless

interaction energy density between the two loop. In general, the function f and

h may depend explicitly on s and s̄ (through, for instance, the difference |s− s̄|).
This would be the case, for example, if the loops were non uniformly charged.

However, we suppress such dependence until further notice.

Our focus is on situations where all interaction energies are repulsive. Con-

sistent with this, we restrict attention to configurations of the system in which

contact between the points of a single loop or between points of the two loops can-

not occur. This obviates any need to introduce unilateral constraints that would

otherwise be necessary to eliminate the passage of either loop through itself or of

one loop through another.

3.2.3 Dimensionless parameters

We choose a scaling in which lengths are measured relative to the radius

R of the sphere S to which the loops C1 and C2 are confined and energies are

measured relative to the bending energy µ1/R that would be stored in C1 if it

were of length 2πR and coincident with a great circle of S . On this basis, we

identify two dimensionless measures,

`1 =
L1

R
and `2 =

L2

R
, (3.18)

of the length and four dimensionless measures,

ν =
µ2

µ1
, ζ1 =

R3A11

µ1
, ζ2 =

R3A22

µ1
, and χ =

R3A12

µ1
, (3.19)

of energy. Moreover, we define the dimensionless total energy F of the system of

two loops C1 and C2 by

F =
RE
µ1

= FB +FS +FI, (3.20)
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where the dimensionless counterparts, FB, FS, and FI, of the bending energy, self

energy, and interaction energy are given by

FB[n1, n2] =
1
2

∫ `1

0
k2

1 ds +
ν

2

∫ `2

0
k2

2 ds, (3.21a)

FS[n1, n2] =
ζ1

2

∫ `1

0

∫ `1

0
f (|n1(s)− n1(s̄)|)ds̄ ds +

ζ2

2

∫ `2

0

∫ `2

0
f (|n2(s)− n2(s̄)|)ds̄ ds,

(3.21b)

and

FI[n1, n2] =
χ

2

∫ `1

0

∫ `2

0
h(|n1(s)− n2(s̄)|)ds̄ ds. (3.21c)

3.3 First and second variation conditions

Following Ericksen’s [53] treatment of elastic stability theory, we focus on

obtaining equilibrium configurations of C1 and C2, as characterized by n1 and n2,

that are stable in the sense that the first variation condition

δF [n1, n2](v1, v2) = 0 (3.22)

and the second variation condition

δ2F [n1, n2](v1, v2) ≥ 0, (3.23)

must both hold for all variations v1 = δn1 and v2 = δn2 of n1 and n2 that, consis-

tent with the constraints (3.4), satisfy

ni · vi = 0 and n′i · v′i = 0, i = 1, 2. (3.24)

In so doing, we assume that the variations vi depends periodically on arclength

on Ci, i = 1, 2. Moreover, we emphasize that n1 and n2 in (3.23) must satisfy (3.22).
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In appendix A, we derive the first variation condition (3.22) for F defined by

(3.20) and find that it takes the form

δF [n1, n2](v1, v2) =
∫ `1

0
((n′′′1 + λ1n′1)

′ + Λ1n1 − ζ1ϕ[n1, n1]− χϕ[n1, n2]) · v1 ds

+
∫ `2

0
(ν(n′′′2 + λ2n′2)

′ + Λ2n2 − ζ2ϕ[n2, n2]− χϕ[n2, n1]) · v2 ds

+ n′′1 · v′1|`1
0 − (n′′′1 + λ1n′1) · v1|`1

0 + νn′′2 · v′2|`2
0 − ν(n′′′2 + λ2n′2) · v2|`2

0 , (3.25)

where Λi and λi are Lagrange multipliers that are needed to ensure satisfaction

of (3.4)1 and (3.4)2, respectively, and ϕ is defined according to

ϕ[ni, nj] =





−
∫ `j

0
f (ni − nj(s̄))ds̄, i = j,

−
∫ `j

0
h(ni − nj(s̄))ds̄, i 6= j,





, i, j = 1, 2, (3.26)

with the integral kernels f and h being given by

f ($) =
d f ($)

d$

∣∣∣∣
$=|$|

$

|$| and h($) =
dh($)

d$

∣∣∣∣
$=|$|

$

|$| . (3.27)

Applying the fundamental theorem of the calculus of variations to the first varia-

tion condition (3.22), we obtain equilibrium conditions in terms of a coupled pair

of Euler–Lagrange equations,

(n′′′1 + λ1n′1)
′ + Λ1n1 = ζ1ϕ[n1, n1] + χϕ[n1, n2],

ν(n′′′2 + λ2n′2)
′ + Λ2n2 = ζ2ϕ[n2, n2] + χϕ[n2, n1],





, (3.28)

and the boundary conditions

n′′1 · v′1|`1
0 − (n′′′1 + λ1n′1) · v1|`1

0 = 0,

n′′2 · v′2|`2
0 − (n′′′2 + λ2n′2) · v2|`2

0 = 0,





. (3.29)

Crucially, (3.28)1 and (3.29)1 hold on C1 but (3.28)2 and (3.29)2 hold on C2. Physical

meaning of each of the terms involved in the Euler-Lagrange equations (3.28) is

summarized in the table 3.1.
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3.3.1 Boundary conditions

For smooth, closed curves, the boundary conditions (3.29) are trivially satis-

fied. However, for open curves, the terms in (3.29) are simplified depending on

the type of boundary condition. For Dirichilet (first-type) boundary condition for

curve Ci, where the value of ni is specified at the end points, the variation in ni at

the end points is zero which yields vi(0) = vi(`i) = 0. Therefore, the requirement

that all the admissible perturbations vi satisfy (3.29) yields

n′′i (0) = n′′i (`i) = 0. (3.30)

In other words, the curve Ci parameterized by ni that extremizes the dimension-

less energy (3.20), when imposed with Dirichilet boundary condition yields zero

curvature at the end points. This conclusion hold true even in the case where no

interaction is present, i.e., FS = FI = 0. Essentially, a bending energy minimizing

curve that satisfies Dirichilet boundary condition, has zero curvature at the end

points.

For Neumann (second-type) boundary condition for curve Ci, where the

value of the derivative n′i is specified at the end points, the variation in n′i at

the end points is zero which yields v′i(0) = v′i(`i) = 0. Therefore, the requirement

that all the admissible perturbations vi satisfy (3.29) yields

n′′′i (0) = −λi(0)n′i(0) and n′′′i (`i) = −λi(`i)n′i(`i) (3.31)

which is a force balance at the end points between the bending resistance and the

reactive tension developed in the curve to maintain inextensibility.

Henceforth, our work only involves smooth, closed curves referred to as

loops which trivially satisfy the boundary condtions (3.29). In appendix A, we
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Table 3.1: Terms in the equilibrium equation (3.28) and their significance.

Term Dimensionless force

Λini Adhesive force acting on the curve Ci to restrict it to S .

(λin′′i + λ′in
′
i) Reactive tension in the curve Ci to ensure inextensibility .

−ζiϕ[ni, ni] Force acting on the element ds of Ci at arclength s against

repulsion by all the remaining elements of Ci .

−χϕ[ni, nj] Force acting on the element ds of Ci at arclength s against

repulsion by all the remaining elements of Cj, i, j = 1, 2, i 6= j .

also derive the second variation condition (3.23) and find that it takes the form

∫ `1

0
(|v′′1 |2 − λ1|v′1|2 + (λ′1v′1 + Λ1v1 − ζ1ϑ[n1, n1](v1, v1)

− χϑ[n1, n2](v1, v2)) · v1)ds

+
∫ `2

0
(ν(|v′′2 |2 − λ2|v′2|2) + (νλ′2v′2 + Λ2v2 − ζ2ϑ[n2, n2](v2, v2)

− χϑ[n2, n1](v2, v1)) · v2)ds ≥ 0, (3.32)

where ϑ is defined according to

ϑ[ni, nj](vi, vj) =





−
∫ `j

0
F(ni − nj(s̄))(vi − vj(s̄))ds̄, i = j,

−
∫ `j

0
H(ni − nj(s̄))(vi − vj(s̄))ds̄, i 6= j,





, i, j = 1, 2,

(3.33)

with the integral kernels F and h being given by

F[$] =
1
$

(d f ($)
d$

1 +
d

d$

(1
$

d f ($)
d$

)
$⊗$

)∣∣∣
$=|$|

(3.34a)

and

H[$] =
1
$

(dh($)
d$

1 +
d

d$

(1
$

dh($)
d$

)
$⊗$

)∣∣∣
$=|$|

. (3.34b)
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3.4 Limitations of our model

One of the major limitation of our framework is that it can not account for

thickness of the polyelectrolytes and bio molecules such as peptides, proteins

and DNA. A more realistic model for such entities will involve rods that consist

of a space curve representing its centerline and a material frame at each point

on the centerline that contains information about the cross-section of the rod.

Additionally, twist in the rod can describe the effect of helicity of the molecules

which our space curve based model is unable to incorporate.

Moreover, since a rod has finite thickness, overlap between two elements of

the rod will have finite interaction energy, assuming that the charges are concen-

trated along the centerline of the rod. Therefore, a model consisting of rods can

capture intersections in the molecules. In contrast, our model that involves space

curve for which intra-loop or intra-loop overlap of the elements will result in blow

up of the interaction energy. Hence, our model is not equipped to capture any

kind of self-intersection or the intersection between two molecules.

Flexibility of elongated molecules are usually described in the terms of per-

sistence length. Short range atomic and molecular level interactions lead to the

bending rigidity and the notion of persistence length [56]. In the case of charged

polymers, the long range nature of the electrostatic interactions modifies the value

of the persistence length and effective bending rigidity as described in the semi-

nal work of Odijk, Skolnick, and Fixman (OSF) [57]. In our model, the bending

energy is characterized through a single, constant bending modulus which means

that the length of the curves we consider are smaller than their persistence length.

We do not consider any thermal fluctuation in our model. Moreover, we consider

bending energy and intra-loop interaction energy as two independent effects. We

do not derive effective bending rigidity due to intra-loop repulsion between ele-

ments of a curve.
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3.5 Conclusion

We have used a variational model to study the equilibrium configuration

and stability behavior of two charged loops constrained to a sphere. Our model

involves five material parameters: the bending rigidity of the two loops µ1 and

µ2, the self energy coefficient of the two loops A11 and A22 and the interaction

energy parameter A12 between the two loops. In combination with the length of

the two loops L1 and L2 and radius of the sphere R, these quantities give rise to

six dimensionless parameters: the ratio of the bending modulus µ = µ2/µ1, the

ratio of self energy coefficient and the bending modulus scaled with the radius

of the sphere ζ1 = A11R3/µ1, ζ2 = A22R3/µ1, the ratio of the interaction energy

coefficient and the bending modulus scaled with the radius of the sphere χ =

A12R3/µ1 and the ratio of the length of the loop to the radius of the sphere

l1 = L1/R and l2 = L2/R.
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Chapter 4 Specialized application

4.1 Introduction

In this chapter, we apply the framework developed in developed in chapter 3

to a simplified problem to gain more insight into how the competition between

various energy drive the equilibrium configuration and its stability. In §4.2 we

characterize the interaction of two uniformly charged loops that have the same

length and material parameters. The trivial equilibrium solution to this special

problem is presented in §4.2.3. Stability criteria for the trivial solution is identified

in §4.3 and the associated bifurcation analysis is obtained in §4.4. Explanation

of how the geometric and material parameters effect the stability of the trivial

solution are provided in §4.3.

4.2 Model

To acquire a partial understanding of how the effects of bending energy, self

energy, and interaction energy combine to influence equilibrium configurations

of the system of two loops, we consider the particular situation where the C1 and

C2 have the same length, bending moduli, and interaction parameters, so that

L1 = L2 = L, µ1 = µ2 = µ, and A11 = A22 = A, (4.1)

and, thus are both geometrically and physically indistinguishable. With this sim-

plification, the general problem formulated in the previous chapter reduces to

one involving only a single dimensionless measure of length, namely

a =
L

2πR
(4.2)
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and two dimensionless measures of energy, namely

ζ =
R3A

µ
and χ =

R3A12

µ
. (4.3)

To ensure the existence of a trivial equilibrium solution in which C1 and C2 are

circular and lie in parallel planes, we assume that

0 < a < 1. (4.4)

In view of the stated assumptions, the Euler–Lagrange equations (3.28) spe-

cialize to
(n′′′1 + λ1n′1)

′ + Λ1n1 = ζϕ[n1, n1] + χϕ[n1, n2],

(n′′′2 + λ2n′2)
′ + Λ2n2 = ζϕ[n2, n2] + χϕ[n2, n1],





. (4.5)

Similarly, the second variation condition (3.32) specializes to

∫ 2πa

0
(|v′′1 |2 − λ1|v′1|2 + (λ′1v′1 + Λ1v1 − ζϑ[n1, n1](v1, v1)

− χϑ[n1, n2](v1, v2)) · v1)ds

+
∫ 2πa

0
((|v′′2 |2 − λ2|v′2|2) + (λ′2v′2 + Λ2v2 − ζϑ[n2, n2](v2, v2)

− χϑ[n2, n1](v2, v1)) · v2)ds ≥ 0. (4.6)

4.2.1 Interaction potentials

In an additional simplifying assumption, we take C1 and C2 to be uniformly

charged, in which case the general expressions for f and h specialize to

f ($) = h($) =
1
$

, (4.7)

while the allied quantities f and h defined in (3.27) and for F and H defined in

(3.34a) and (3.34b) are given by

f ($) = h($) = − $

|$|3 and F($) = H($) =
3
|$|3

($⊗$

|$|2 −
1
3
1

)
. (4.8)
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self intersection inter-loop intersection

f , f , and F diverge h, h, and H diverge

Figure 4.1: Intra-loop and inter-loop intersections and the quantities that diverge
in the corresponding situations.

Each of these quantities diverges as $ → 0. These divergences stem from the

repulsive nature of the potentials f and h and embody our desire to penalize self

intersections of C1 and C2 and intersections between C1 and C2 which are described

in the figure 4.1. From this perspective, the functionals ES and EI are analogous

to O’Hara’s [49] energy functional, which diverges when a curve intersects itself

and which O’Hara [50, 51] subsequently interpreted as the potential energy of an

electrically charged loop, the Coulomb force of which is proportional to inverse

of the cube of the distance between points on the loop. Independent of any

divergence of the kind described in the previous paragraph, the situation ρ = 0

is encountered in the integrals (3.26)1 and (3.33)1 involving the kernels f and F

when the variable of integration coincides with the arclength at which ϕ[ni, ni] and

ϑ[ni, ni](vi, vi) are evaluated, respectively. This kind of divergence is unphysical

and therefore warrants regularization. As s̄ → s, ni(s̄) − ni(s) ∼ (s̄ − s)n′i(s) +
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0 π
0

1

M(η) η = |s̄−s|
2a .

Figure 4.2: Example of a mollifying function M with compact support.

O[(s̄− s)2] and consequently,

f (ni(s)− ni(s̄)) ∼ |s̄− s|−2 and F(ni(s)− ni(s̄)) ∼ |s̄− s|−3 (4.9)

for s̄ in neighborhood of s. To be effective, any regularization strategy must be

designed to account for the third-order singularity in the magnitude of its argu-

ment that is evident from (4.8) and (4.9). In this regard, it suffices to introduce a

mollifier M with compact support and with properties

M(|η|) > 0 and M(|η|) ∼ η4 as η → 0, (4.10)

and replace the potential f by a regularized potential f̃ of the form

f̃
(
|ni(s)− ni(s̄)|,

|s̄− s|
2a

)
= M

( |s̄− s|
2a

) 1
|ni(s)− ni(s̄)|

, i = 1, 2. (4.11)

Because |s̄− s| ∈ [0, 2πa], we have normalized this quantity in the argument of M

with the factor 2a such that domain of the function M is [0, π]. A typical mollifier

M is shown in the figure 4.2.

Since the variable of integration coincides with the arclength at which ϕ[ni, nj]

and ϑ[ni, nj](vi, vj), i, j = 1, 2, i 6= j, is evaluated only if C1 and C2 intersect and

such intersections are penalized as described above, there is no analogous need

to regularize interaction potential h and the allied kernels h and H.
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4.2.2 Regularized equilibrium equations

Granted that the potential f in (4.7) is replaced by f̃ defined in (4.11), the

Euler–Lagrange equations (4.5) and the second variation condition (4.6) change to

(n′′′1 + λ1n′1)
′ + Λ1n1 = ζϕ̃[n1, n1] + χϕ[n1, n2],

(n′′′2 + λ2n′2)
′ + Λ2n2 = ζϕ̃[n2, n2] + χϕ[n2, n1],





, (4.12)

where ϕ̃ is defined by

ϕ̃[ni, ni](s) = −
∫ 2πa

0
M
( |s̄− s|

2a

)
f (ni(s)− ni(s̄))ds̄, i = 1, 2. (4.13)

Similarly, the second variation condition (4.6) changes to

∫ 2πa

0
(|v′′1 |2 − λ1|v′1|2 + (λ′1v′1 + Λ1v1 − ζϑ̃[n1, n1](v1, v1)

− χϑ[n1, n2](v1, v2)) · v1)ds

+
∫ 2πa

0
((|v′′2 |2 − λ2|v′2|2) + (λ′2v′2 + Λ2v2 − ζϑ̃[n2, n2](v2, v2)

− χϑ[n2, n1](v2, v1)) · v2)ds ≥ 0, (4.14)

where ϑ̃ is defined by

ϑ̃[ni, ni](vi, vi) = −
∫ 2πa

0
M
( |s̄− s|

2a

)
F(ni− ni(s̄))(vi− vi(s̄))ds̄, i = 1, 2. (4.15)

Whereas (4.12)1 and (4.12)2 are obtained by substituting ϕ(n1, n1) in (4.5)1 with

ϕ̃(n1, n1) and ϕ(n2, n2) in (4.5)2 with ϕ̃(n2, n2), (4.14) is obtained by substituting

ϑ[ni, ni](vi, vi) in (4.6) with ϑ̃[ni, ni](vi, vi), i = 1, 2. The mollified quantities are

obtained by multiplying the integral kernels f and F of the (3.26)1 and (3.33)1

by M. As noted in the previous subsection, these modifications eliminate non-

physical divergences that arise due to definition of the self interaction potential

f .
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1
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2
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Ra

k

R
p

1 � a2

R
p

1 � a2

e

P

Figure 2: Circular loops C1 and C2 of dimensionless length 2⇡a, with 0 < a < 1, situated on opposing planes parallel to an
equatorial plane of a sphere S, of radius R, at respective altitudes R

p
1 � a2 and �R

p
1 � a2. The vector field e describes the

restriction to the equatorial great circle of the outward unit normal to S.

Similarly, the second variation condition (37) changes to

Z 2⇡a

0

(|v00
1 |2 � �1|v0

1|2 + (�01v
0
1 + ⇤1v1 � ⇣#̃[n1, n1](v1, v1) � �#[n1, n2](v1, v2)) · v1) ds

+

Z 2⇡a

0

((|v00
2 |2 � �2|v0

2|2) + (�02v
0
2 + ⇤2v2 � ⇣#̃[n2, n2](v2, v2) � �#[n2, n1](v2, v1)) · v2) ds � 0, (44)

where #̃ is defined by

#̃[ni, ni](vi, vi) = �
Z 2⇡a

0

M
⇣ |s̄ � s|

2a

⌘
F (ni � ni(s̄))(vi � vi(s̄)) ds̄, i = 1, 2. (45)

Whereas (42)1 and (42)2 are obtained by substituting '(n1, n1) in (36)1 with '̃(n1, n1) and '(n2, n2) in
(36)2 with '̃(n2, n2), (44) is obtained by substituting #[ni, ni](vi, vi) in (37) with #̃[ni, ni](vi, vi), i = 1, 2.
The mollified quantities are obtained by multiplying the integral kernels f and F of the (26)1 and (30)1 by
M . As noted in the previous subsection, these modifications eliminate nonphysical divergences that arise
due to definition of the self interaction potential f .

3.3. Trivial equilibrium solution

Consider an equatorial plane P of the sphere S upon which the loops C1 and C2 are confined, as shown
in Figure 2. Let {ı, |, k} be a positively-oriented orthonormal basis with k directed upward along the polar
axis A of S. Then, e defined by

e(s) =
⇣

cos
s

a

⌘
ı +

⇣
sin

s

a

⌘
|, 0  s  2⇡a, (46)

represents the restriction to the equatorial great circle of the outward unit normal to S. We suppose that
the loops are circles — denoted by C⇤

1 and C⇤
2 — of radius Ra that reside in planes parallel to and separated

from P by the distance R
p

1 � a2. The total energy of this configuration does not change on fixing one loop
and rotating the other loop by an arbitrary angle about A. We may therefore choose the quantities n⇤

1 and
n⇤

2 that parametrize C⇤
1 and C⇤

2 to be of the form

n⇤
1 = n and n⇤

2 = Qn, (47)

where n is defined such that

n(s) = ae(s) +
p

1 � a2k, 0  s  2⇡a, (48)

9

Figure 4.3: Circular loops C1 and C2 of dimensionless length 2πa, with 0 < a < 1,
situated on opposing planes parallel to an equatorial plane of a sphere
S , of radius R, at respective altitudes R

√
1− a2 and −R

√
1− a2. The

vector field e describes the restriction to the equatorial great circle of
the outward unit normal to S .

4.2.3 Trivial equilibrium solution

Consider an equatorial plane P of the sphere S upon which the loops C1

and C2 are confined, as shown in Figure 4.3. Let {ı, , k} be a positively-oriented

orthonormal basis with k directed upward along the polar axis A of S . Then, e

defined by

e(s) =
(

cos
s
a

)
ı +
(

sin
s
a

)
, 0 ≤ s ≤ 2πa, (4.16)

represents the restriction to the equatorial great circle of the outward unit nor-

mal to S . We suppose that the loops are circles — denoted by C∗1 and C∗2 — of

radius Ra that reside in planes parallel to and separated from P by the distance

R
√

1− a2. The total energy of this configuration does not change on fixing one

loop and rotating the other loop by an arbitrary angle about A. We may therefore

choose the quantities n∗1 and n∗2 that parametrize C∗1 and C∗2 to be of the form

n∗1 = n and n∗2 = Qn, (4.17)
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where n is defined such that

n(s) = ae(s) +
√

1− a2k, 0 ≤ s ≤ 2πa, (4.18)

and, Q defined by

Q(φ) = cos φ(ı⊗ ı + ⊗ )− sin φ(ı⊗ − ⊗ ı)− 2k⊗ k, 0 ≤ ψ ≤ 2π (4.19)

is the orthogonal tensor that transforms any vector by simultaneously reflecting

it across A and rotating it counterclockwise by φ about A. The elementary prop-

erties of Q that are useful for further calculations are

|Qm| = |m| and Q>Q = 1 . (4.20)

We substitute the particular choices (4.17) of n1 and n2 in the equilibrium equa-

tions (4.12) and make simplifications by applying Q> to second of the equations

obtained by using (4.20), leading to

(n′′′ + λ∗1n′)′ + Λ∗1n = ζ
∫ 2πa

0
M
( |s̄− s|

2a

) n− n(s̄)
|n− n(s̄)| ds̄

+ χ
∫ 2πa

0

n−Qn(s̄)
|n−Qn(s̄)| ds̄,

(n′′′ + λ∗2n′)′ + Λ∗2n = ζ
∫ 2πa

0
M
( |s̄− s|

2a

) n− n(s̄)
|n− n(s̄)| ds̄

+ χ
∫ 2πa

0

n−Q>n(s̄)
|n−Q>n(s̄)| ds̄,





,

where Λ∗i and λ∗i are the Lagrange multipliers, as yet undetermined, needed

to ensure the circular loop C∗i , i = 1, 2, is configured in consistency with the

constraints (3.4)1 and (3.4)2, respectively. Next, since

Q>(φ)n(s + 2aφ) = Q(φ)n(s), 0 ≤ s ≤ 2πa, (4.21)

we may use the change of variables s̄ → s̄ + 2aφ in the second integral on the

right-hand side of (4.21)2 to find that, since n is periodic on the interval from 0 to

2πa,
∫ 2πa

0

n−Q>n(s̄)
|n−Q>n(s̄)| ds̄ =

∫ 2(π+φ)a

2φa

n−Qn(s̄)
|n−Qn(s̄)| ds̄ =

∫ 2πa

0

n−Qn(s̄)
|n−Qn(s̄)| ds̄. (4.22)
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Using (4.22) in (4.21)2 and subtracting the resulting equation from (4.21)1, we

obtain the condition

λ∗1n′′ + (λ∗1)
′n′ + Λ∗1n = λ∗1n′′ + (λ∗2)

′n′ + Λ∗2n. (4.23)

Computing the dot product with k on both sides of (4.23) while noting from (4.18)

that k · n′ = 0 and k · n′′ = 0, we find that

Λ∗1 = Λ∗2 = Λ. (4.24)

Similarly, computing the dot product with n′′ on both sides of (4.23), noting that

differentiating (3.4)1 twice and using (3.4)2 yields n · n′′ = −1 and differentiating

(3.4)2 yields n′ · n′′ = 0, we find that λ∗1 |n′′|2 − Λ∗1 = λ∗2 |n′′|2 − Λ∗2 and, thus, by

(4.24), that

λ∗1 = λ∗2 = λ. (4.25)

In view of (4.22), (4.24), and (4.25), the equilibrium conditions (4.21)1 and

(4.21)2 are equivalent. We may thus use either of these conditions to determine Λ

and λ. Using (4.24) and (4.25) in the left-hand side of (4.21)1, we get

(n′′′ + λn′)′ + Λn− ζ
∫ 2πa

0
M
( |s̄− s|

2a

) n− n(s̄)
|n− n(s̄)| ds̄− χ

∫ 2πa

0

n−Qn(s̄)
|n−Qn(s̄)| ds̄ = 0.

(4.26)

Bearing in mind that the dimensionless geodesic curvature of C∗1 is given by

k =

√
1− a2

a
, (4.27)

we obtain the identity

(n′′′ + λn′)′ + Λn = λ′t +
(

Λ− λ +
1
a2

)
n−
√

1− a2

a

(
λ− 1

a2

)
g, (4.28)

where t and g given by

t(s) = −
(

sin
s
a

)
ı +
(

cos
s
a

)
, g(s) =

√
1− a2e(s)− ak, 0 ≤ s ≤ 2πa,

(4.29)
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denote the tangential and geodesic elements of the Darboux frame for C∗1 . With

the change of variables η = |s̄− s|/2a, we next find that the integrals in (4.26)1

can be expressed as

ζ
∫ 2πa

0
M
( |s̄− s|

2a

) n− n(s̄)
|n− n(s̄)| ds̄ + χ

∫ 2πa

0

n−Qn(s̄)
|n−Qn(s̄)| ds̄

=

(
ζ

2

∫ π

0
M(η) csc η dη +

χa
2

∫ π

0

dη√
1− a2 cos2 η

)
n

+

(
ζ

2

∫ π

0
M(η) csc η dη − χa3

2

∫ π

0

cos2 η dη
3
√

1− a2 cos2 η

)
g. (4.30)

Using (4.28) and (4.30) in (4.21)1, we thus obtain a reduced system

λ′ = 0,

Λ− λ +
1
a2 −

ζ

2

∫ π

0
M(η) csc η dη − χa

2

∫ π

0

dη√
1− a2 cos2 η

= 0,

λ− 1
a2 +

ζ

2

∫ π

0
M(η) csc η dη − χa3

2

∫ π

0

cos2 η dη
3
√

1− a2 cos2 η
= 0,





, (4.31)

for Λ and λ. By (4.31)1, we see that λ must be uniform. With this being the

case, we see from (4.31)2 that Λ must also be uniform. Finally, solving the linear

systems (4.31)2,3 for Λ and λ, we find that

Λ =
aχ

2

∫ π

0

dη
3
√

1− a2 cos2 η
and

λ =
1
a2 −

ζ

2

∫ π

0
M(η) csc η dη +

χa3

2

∫ π

0

cos2 η dη
3
√

1− a2 cos2 η
. (4.32)

The reactions needed to ensure that the loops adhere to S are therefore equal

and given by µΛ/R2. Similarly, the reactions needed to ensure that the lengths of

the loops are preserved pointwise are equal and given by µλ/R2. From (4.32)1,

we see that the adhesive reaction depends only on the common dimensionless

radius a of the loops and the dimensionless measure χ of the importance of the

repulsive interaction between the loops relative to their bending stiffness. From
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Figure 3: Plots of the Lagrange multipliers ⇤/� in (62)1 and reduced multiplier �̃/� in (64) versus the dimensionless radius a
of the circular loops. ⇤ is the dimensionless adhesive force between the curve and the sphere and �̃ is the dimensionless tension
developed in the curves due to repulsion between the two loops. Both the quantities monotonically increase with a.

denote the tangential and geodesic elements of the Darboux frame for C⇤
1 . With the change of variables

⌘ = |s̄ � s|/2a, we next find that the right-hand side of (51)1 can be expressed as

⇣

Z 2⇡a

0

M
⇣ |s̄ � s|

2a

⌘ n � n(s̄)

|n � n(s̄)| ds̄ + �

Z 2⇡a

0

n � Qn(s̄)

|n � Qn(s̄)| ds̄

=

✓
⇣

2

Z ⇡

0

M(⌘) csc ⌘ d⌘ +
�a

2

Z ⇡

0

d⌘p
1 � a2 cos2 ⌘

◆
n

+

✓
⇣

2

Z ⇡

0

M(⌘) csc ⌘ d⌘ � �a3

2

Z ⇡

0

cos2 ⌘ d⌘
3
p

1 � a2 cos2 ⌘

◆
g. (60)

Using (58) and (60) in (51)1, we thus obtain a reduced system

�0 = 0,

⇤� �+
1

a2
� ⇣

2

Z ⇡

0

M(⌘) csc ⌘ d⌘ � �a

2

Z ⇡

0

d⌘p
1 � a2 cos2 ⌘

= 0,

�� 1

a2
+
⇣

2

Z ⇡

0

M(⌘) csc ⌘ d⌘ � �a3

2

Z ⇡

0

cos2 ⌘ d⌘
3
p

1 � a2 cos2 ⌘
= 0,

9
>>>>>>>=
>>>>>>>;

, (61)

for ⇤ and �. By (61)1, we see that � must be uniform. With this being the case, we see from (61)2 that ⇤
must also be uniform. Finally, solving the linear systems (61)2,3 for ⇤ and �, we find that

⇤ =
a�

2

Z ⇡

0

d⌘
3
p

1 � a2 cos2 ⌘
and � =

1

a2
� ⇣

2

Z ⇡

0

M(⌘) csc ⌘ d⌘ +
�a3

2

Z ⇡

0

cos2 ⌘ d⌘
3
p

1 � a2 cos2 ⌘
. (62)

The reactions needed to ensure that the loops adhere to S are therefore equal and given by µ⇤/R2.
Similarly, the reactions needed to ensure that the lengths of the loops are preserved pointwise are equal and
given by µ�/R2. From (62)1, we see that the adhesive reaction depends only on the common dimensionless
radius a of the loops and the dimensionless measure � of the importance of the repulsive interaction between
the loops relative to their bending sti↵ness. From (62)1, we see that the ratio ⇤/� depends only on a and,
moreover, that

⇤

�
⇠ a as a # 0,

⇤

�
⇠ 1

1 � a
as a " 1, and

d

da

⇣⇤
�

⌘
> 0 for 0 < a < 1. (63)

11

Figure 4.4: Plots of the Lagrange multipliers Λ/χ in (4.32)1 and reduced multi-
plier λ̃/χ in (4.34) versus the dimensionless radius a of the circular
loops. Λ is the dimensionless adhesive force between the curve and
the sphere and λ̃ is the dimensionless tension developed in the curves
due to repulsion between the two loops. Both the quantities monoton-
ically increase with a.

(4.32)1, we see that the ratio Λ/χ depends only on a and, moreover, that

Λ
χ
∼ a as a ↓ 0,

Λ
χ
∼ 1

1− a
as a ↑ 1, and

d
da

(Λ
χ

)
> 0 for 0 < a < 1.

(4.33)

We thus infer that the magnitude of the adhesive reaction increases monotonically

with a for 0 < a < 1. From (4.32)2, the tensile reaction encompasses several

competing effects. The first term, 1/a2 on the right-hand side of (4.32)2 is the

contribution to the reaction associated with ensuring that the action of bending

a straight segments of length 2πRa into a circular loop of radius Ra involves

neither local elongation nor contraction. Since the integral in the second term

on the right-hand side of (4.32)2 is independent of a, that term simply produces

a uniform reaction proportional to the dimensionless measure ζ of the repulsive

self interactions of the loops relative to their bending stiffness. The final term on
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the right-hand side of (4.32)2 depends only on a and χ and, thus, is analogous to

the only term on the right-hand side of (4.32)1. To explore the properties of the

associated reaction, we therefore consider the reduced multiplier

λ̃ = λ− 1
a2 +

ζ

2

∫ π

0
M(η) csc η dη =

χa3

2

∫ π

0

cos2 η dη
3
√

1− a2 cos2 η
. (4.34)

Emulating the reasoning leading to (4.33), we see that

λ̃

χ
∼ a3 as a ↓ 0,

λ̃

χ
∼ 1

1− a
as a ↑ 1, and

d
da

( λ̃

χ

)
> 0 for 0 < a < 1.

(4.35)

We thus infer the magnitude of the reaction needed to ensure that the lengths of

the loops are preserved pointwise increases monotonically with a for 0 < a < 1.

Plots of Λ/χ and λ̃/χ versus a for 0 < a < 1 are provided in Figure 4.4.

These confirm our qualitative observations. For a→ 0, the distance between loops

is maximized, meaning that the repulsive interaction between them diminishes.

Consequently, Λ and λ̃ both vanish as a → 0. Since λ ∼ 1/a2 in this regime, the

tensile reaction is dominated by the bending resistance of the loops. For a → 1,

Λ ∼ (1 − a)−1 and λ ∼ (1 − a)−1, from which we see that the reactions are

dominated by the interactions between the loops.

4.3 Stability analysis of the trivial solution

Given a dimensionless radius 0 < a < 1 of the loops and dimensionless

measures ζ ≥ 0 and χ ≥ 0 of the repulsive intraloop and interloop interactions,

n∗i , Λi, and λi, i = 1, 2, defined by (4.17)–(4.18), (4.24)–(4.25), and (4.32) determine

a trivial equilibrium solution to the specialized problem formulated in Section 4.2.

We now explore the stability of the resulting family of solutions for different

combinations of those parameters.

Let v1 and v2 denote variations of the trivial equilibrium configurations C∗1
and C∗2 of the loops. Consistent with the symmetry of the trivial configuration,
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we stipulate that v1 and v2 differ only by a rigid transformation consisting of a

reflection across the equatorial plane P of S and a rotation, by some angle φ,

about the polar axis A of S . It then follows that

v1 = v and v2 = Qv1 = Qv, (4.36)

where n is given by (4.18) and, consistent with (3.24) and since, by (4.20)2 Qn ·v2 =

Qn ·Qv1 = Qn ·Qv = n · v and Qn′ · v′2 = Qn′ ·Qv′1 = Qn′ ·Qv′ = n′ · v′, the

variation v must satisfy

n · v = 0 and n′ · v′ = 0. (4.37)

Using (4.36) and the expressions (4.17) for n∗1 and n∗2 in the stability condition

(4.14), recalling from (4.24)–(4.25) and (4.32) that the Lagrange multipliers Λ∗1 =

Λ∗2 = Λ and λ∗1 = λ∗2 = λ are constant, we find that the trivial equilibrium

solution is stable only if for all admissible v, the inequality

∫ 2πa

0
(|v′′|2 − λ|v′|2 + (Λv− ζϑ̃[n, n](v, v)− χϑ[n, Qn](v, Qv)) · v)ds

+
∫ 2πa

0
((|Qv′′|2 − λ|Qv′|2) + (ΛQv− ζϑ̃[Qn, Qn](Qv, Qv)

− χϑ[Qn, n](Qv, v)) ·Qv)ds ≥ 0, (4.38)

holds, where ϑ̃[ni, ni](vi, vi) and ϑ[ni, nj](vi, vj), i 6= j, are defined in (4.15) and

(3.33), respectively and the kernel F and H of the first and second of these func-

tionals are defined in (4.8)2. We note that these functionals depend linearly on the

perturbation v.

Using the elementary properties of Q defined in (4.20)1,

|Qv′′|2 = |v′′|2, |Qv′|2 = |v′|2, and |Qv|2 = |v|2. (4.39)

Also, we show in the (B.8) that

ϑ̃[Qn, Qn](Qv, Qv) ·Qv = ϑ̃[n, n](v, v) · v. (4.40)
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Furthermore, we impose the restriction on the rotation φ as follows. Let φn denote

the rotation φ for the n-th mode of the perturbation v. Among all the values of

φn, the repulsive interaction energy between the perturbed curves n + εv and

Qn + εQv, where ε is a small number, is minimized for φn = π
n . Therefore, at

φn = π
n , the equilibrium configuration will first become unstable. Assuming this

choice of φn, we showed in (B.11) that

ϑ[Qn, n](Qv, v) ·Qv = ϑ[n, Qn](v, Qv) · v. (4.41)

Equation (4.39), (4.40), and (4.41) imply that the two loops contribute equally

to the bending energy terms, the inter-loop interaction terms, and the intra-loop

interaction terms, respectively in the left hand side of the stability condition (4.38).

Using (4.39), (4.40), and (4.41) in the stability condition (4.38), we obtain a reduced

condition as

∫ 2πa

0
(|v′′|2 − λ|v′|2 + Λ|v|2 − ζϑ̃[n, n](v, v) · v− χϑ[n, Qn](v, Qv) · v)ds ≥ 0.

(4.42)

The variation v can be represented by arclength dependent polar and az-

imuthal angles θ and ψ through

v =
√

1− a2 θe− aθk + aψk× e. (4.43)

From (4.18) and (4.43), we see that

n · v = (ae +
√

1− a2k) · (
√

1− a2 θe− aθk + aψk× e) = 0, (4.44)

and thus, that the constraint (4.37) needed to ensure that the variations do not

cause the loops to separate from S is met for all choices of θ and ψ. Next, differen-

tiating (4.18) and (4.43) with respect to arclength and invoking the consequences

e · e′ = 0, k · e′ = 0, k× e = ae′, and ak× e′ = −e (4.45)
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of (4.16), we see that

n′ · v′ = ae′ · (
√

1− a2(θ′e + θe′)− aθ′k + a2ψ′e′ − ψe) = a(
√

1− a2 θ + a2ψ′)|e′|2

(4.46)

and thus, that constraint (4.37)2 needed to ensure that the variations do not cause

local changes in the lengths of the loops is met only if θ and ψ are related by

√
1− a2 θ + a2ψ′ = 0. (4.47)

In view of (4.47), we may eliminate θ from the representation (4.43) to yield

v = −a2ψ′
(

e− a√
1− a2

k
)
+ aψe× k. (4.48)

Granted that ψ admits the Fourier decomposition

ψ =
∞

∑
n=2

(
cn cos

ns
a
+ dn sin

ns
a

)
, (4.49)

we may use the expressions (4.18), (4.32)1, (4.32)2, and (4.48) for n, Λ, λ, and v

to convert the stability condition (4.42) into an inequality involving the Fourier

coefficients cn and dn, n = 2, . . . , ∞, and the dimensionless parameters a, ζ, and

χ:
∞

∑
n=2

(c2
n + d2

n)(ζαn(a) + βn(a)− χ) ≥ 0. (4.50)

The steps leading to (4.50) and the definitions of αn and βn, n = 2, . . . , ∞, are

provided in the appendixB. From (4.50), we see that the trivial equilibrium con-

figuration corresponding to any particular combination of 0 < a < 1, ζ ≥ 0, and

χ ≥ 0 is stable with respect to all variations v1 and v2 of the form (4.36) with v

determined by (4.48) only if the condition

χ ≤ αn(a)ζ + βn(a) (4.51)

holds for each mode n = 2, . . . , ∞. For each αn > 0 and βn > 0, for n = 2, . . . , ∞,

we identify the intra-loop and inter-loop interaction parameters ζ and χ as the
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abscissa and ordinate in the first quadrant of a coordinate plane. The trivial

equilibrium configuration involving two loops of radius a is unstable with respect

to variations of mode n if the ordered combination (ζ, χ) of ζ and χ lies in the

portion of the first quadrant of the (ζ, χ)-plane above the straight line

Ln(a) = {(ζ, χ) : ζ ≥ 0, χ = αn(a)ζ + βn(a)}. (4.52)

More generally, the trivial equilibrium configuration involving two loops of radius

a is unstable with respect to variations of mode n if the ordered combination (ζ, χ)

of ζ and χ lies in the portion of the first quadrant of the (ζ, χ)-plane above the

lower envelope

L(a) = {(ζ, χ) : ζ ≥ 0, χ = min
n≤2≤∞

(αn(a)ζ + βn(a))} (4.53)

of the family {Ln(a) : n = 2, . . . , ∞} of straight lines of the form (4.52). The curve

L(a) may be polygonal if the lines in the aforementioned family intersect at one

or more points.

To obtain more specific information concerning the coefficients αn(a) and

βn(a) entering the stability condition (4.51), we take the mollifier M to be of the

particular form

M(η) =

(
sin η

sin η + e−7 sin η

)4

(4.54)

used previously by Hoffmann and Manning [46] to calculate the self energy of

a charged rod. Importantly, the choice (4.54) is consistent with the provision

(4.10) that is needed to ensure regularization of the self energy up to its second

variation.

We list the αn and βn values for two representative values of a, a = 0.6 and

a = 0.9 and mode n = 2 . . . 10 in the table 4.1. We see that for a = 0.6, αi > αi+1

and βi < βi+1, i ≥ 2. Therefore, the lower envelope L(0.6) can be constructed

by set of points of P1, P2 . . . P∞ where P1 is point of intersection of L2 with χ-

axis in the (ζ, χ)-plane, i.e., (0, β2) and Pn is the point of intersection between the
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Table 4.1: Coefficient αn and βn of the stability condition (4.51) for a = 0.6 and
a = 0.9 and n = 2 . . . 10, and for M provided in (4.54).

n αn βn

2 7.62 62.15

3 6.04 102.60

4 5.92 170.31

5 5.90 259.10

6 5.89 368.20

7 5.87 497.39

8 5.86 646.58

9 5.85 815.73

10 5.84 1004.83

a = 0.6

n αn βn

2 0.4097 1.6300

3 0.4321 3.3835

4 0.4501 5.8718

5 0.4589 9.0618

6 0.4626 12.9517

7 0.4637 17.5435

8 0.4639 22.8390

9 0.4636 28.8394

10 0.4633 35.5454

a = 0.9

lines corresponding to consecutive modes, Ln and Ln+1 with n ≥ 2. For a = 0.9,

α2 < αi and β2 < βi, ∀ i > 2. Therefore, the lower envelope L(0.9) is constituted

only by the line L2(0.9). In Figure 4.5, we plot the portion of the lower envelope

L(a) over the interval 0 ≤ ζ ≤ 106 for two representative values, a = 0.6 and

a = 0.9, of a and modes n = 2, . . . , 6.

We argue that, depending the dimensionless radius a, the stability plot con-

sists of one or more of line segments Ln(a), n = 2, . . . , ∞ and accordingly the

dominant mode which determines the stability of the trivial solution changes

from n = 2 to the higher mode numbers in the corresponding regions. We ex-

plain the interchanging behavior for the dominant mode as follows. The bending

energy required to displace the configuration from equilibrium solution to a n-th

mode perturbation increases with n. However, interaction energy between the

two curves could lower as the mode number increases. It requires minimum ef-

forts to move the trivial configuration to the mode with lowest energy. Hence,

the dominant mode determining the trivial solution stability changes in different

regions.
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Figure 6: Stability plot for a = 0.6 and a = 0.9. For each a, the stability lines Ln are shown up to mode n = 6. For a = 0.6, the
point of intersection between Ln and Ln+1 is denoted by Pn. The stability curve L(0.6) comprises of di↵erent line segments
between these intersection points. For a = 0.9, the stability curve L(0.9) is constituted only by mode n = 2.

�n as function of dimensionless radius a. As discussed previously, for any given value a, �i(a), i 2 [2, n]
increases monotonically with mode i and for any given mode i, �i(a) decreases monotonically with a.

In Figure 6, we plot the portion of the lower envelope L(a) over the interval 0  ⇣  106 for two
representative values, a = 0.6 and a = 0.9, of a and modes n = 2, . . . , 6. For a = 0.9, the slope ↵2 < ↵i, and
the y�intercept �2 < �i, i 2 [3, 6] as shown in the figure 4 and 5, respectively. Therefore, the stability curve
L(0.9) is constituted only by L2. In this case, for any given value of ⇣, the trivial configuration becomes first
unstable when perturbed in mode n = 2. For a = 0.6, the stability plot L(0.6) consists of segment of the
line L2(0.6) up to P2, followed by the segment of the curve Ln(0.6) between Pn�1 and Pn for n � 3. For ⇣
up to point P2, n = 2 and for ⇣ in the range Pn�1 and Pn, with n � 3, n-th mode is the first stable mode
with respect to which the circular configuration becomes unstable. Although, we have shown the point of
intersections up to P5, the similar idea extends up to any higher mode number n.

We argue that, depending the dimensionless radius a, the stability plot consists of one or more of line
segments Ln(a), n = 2, . . . , 6 and accordingly the dominant mode which determines the stability of the
trivial solution changes from n = 2 to the higher mode numbers in the corresponding regions. We explain
the interchanging behavior for the dominant mode as follows. The bending energy required to displace the
configuration from equilibrium solution to a n-th mode perturbation increases with n. However, interaction
energy between the two curves could lower as the mode number increases. It requires minimum e↵orts to
move the trivial configuration to the mode with lowest energy. Hence, the dominant mode determining the
trivial solution stability changes in di↵erent regions.

We obtain the stability plot for di↵erent values of a from 0.02 till 0.98 in the increment of 0.01 to show
the e↵ect of the dimensionless radius a on the stability plot in the Figure 7. Below the stability line for the
corresponding a, the trivial solution is stable. As discussed, the stability line consists of one or more modes
depending on the value of a.
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Figure 4.5: Stability plot for a = 0.6 and a = 0.9. For each a, the stability lines Ln
are shown up to mode n = 6. For a = 0.6, the point of intersection
between Ln and Ln+1 is denoted by Pn. The stability curve L(0.6)
comprises of different line segments between these intersection points.
For a = 0.9, the stability curve L(0.9) is constituted only by mode
n = 2.

We obtain the stability plot for different values of a from 0.02 till 0.98 in the

increment of 0.01 to show the effect of the dimensionless radius a on the stability

plot in the Figure 4.6. As discussed, the stability line consists of one or more

modes depending on the value of a. Below the stability line for the corresponding

a, the trivial solution is stable.

Also, we conclude from the Figure 4.6 that (i) as the value of a increases,

the parameter space in which the trivial solution is stable reduces. This can be at-

tributed to the fact that the loop C1 and C2 move closer to each other as the value of

a increases and thus repulsion between the loops increases, (ii) an increase in the

intra-loop interaction parameter ζ stabilizes the trivial solution. For the uniformly
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Figure 7: ⇣ versus � stability plot for di↵erent values of a ranging from 0.02 to 0.98. For a given a, the stability curve consists
of di↵erent colors that correspond to the first mode that makes the trivial configuration unstable in the respective regions. For
given a, the trivial solution is stable below the corresponding stability curve.

Also, we conclude from the Figure 7 that (i) as the value of a increases, the parameter space in which
the trivial solution is stable reduces. This can be attributed to the fact that the loop C1 and C2 move
closer to each other as the value of a increases and thus repulsion between the loops increases, (ii) an
increase in the self energy parameter ⇣ stabilizes the trivial solution. For the uniformly charged loop, the self
interaction energy is minimum for a circular configuration of the loop. Therefore, the increase in ⇣ favors
the circular configuration more, and (iii) an increase in the repulsive interaction parameter � destabilizes
the trivial solution. The repulsive interaction between the loops push each other toward the pole. However,
the restriction of loop to the sphere in combination with inextensibility of loop implies that trivial circular
configuration would tend to adopt a non-trivial shape as � is increased.

5. Bifurcation from the trivial solution

By the implicit function theorem (as stated, for example, by Golubitsky and Schae↵er [47] and Chen [48]),
the dimensionless boundary-value problem consisting of (24) and (36) has a nontrivial solution branch that
bifurcates from the trivial solution branch characterized by (47) and (62) only if the boundary-value problem
obtained by linearizing (24) and (36) about (47) and (62) has a nontrivial solution. Let v1 and v2 denote
increments to n and Qn, respectively. Additionally, let �i and ⌃i denote increments to �i and ⇤i, i = 1, 2,
respectively. To be consistent with the assumptions made in the linear stability analysis in the previous
section, we impose further restrictions on the perturbations v1 and v2 according to (66).
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Figure 4.6: ζ versus χ stability plot for different values of a ranging from 0.02
to 0.98. For a given a, the stability curve consists of different colors
that correspond to the first mode that makes the trivial configuration
unstable in the respective regions. For given a, the trivial solution is
stable below the corresponding stability curve.

charged loop, the self interaction energy is minimum for a circular configuration

of the loop. Therefore, the increase in ζ favors the circular configuration more,

and (iii) an increase in the repulsive interaction parameter χ destabilizes the triv-

ial solution. The repulsive interaction between the loops push each other toward

the pole. However, the restriction of loop to the sphere in combination with inex-

tensibility of loop implies that trivial circular configuration would tend to adopt

a non-trivial shape as χ is increased.
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4.4 Bifurcation analysis

In this section, we briefly describe the general concept of bifurcation analysis

and non-trivial branches and then specialize the concept to our problem. The

explanation provided in the next paragraphs is completely adopted Chen [55] .

Let X and Y be Banach spaces (normed linear spaces), U an open subset of

X , and ϑ an open subset of Rn. Consider a smooth mapping g : U × ϑ→ Y . Let

g(u, ε) = 0 (4.55)

determines the state of a physical system with n parameters. For example, (4.55)

can be the equilibrium equation for an elastic body. In this connection, u can be a

function that describes the deformation of the body, g a differential operator, and

ε a set of parameters that specify, for example, the loads, the geometry and the

material properties of the body. The variable u is called the state variable, and ε

the bifurcation parameter.

Suppose that (u0, ε0) ∈ U × ϑ satisfies (4.55). If the number of solutions

of (4.55) in an arbitrarily small neighborhood of (u0, ε0) changes as ε varies, the

pair (u0, ε0) is called a bifurcation point. The solutions in this neighborhood are

referred to as bifurcation solution branches, and a graphical representation of the

bifurcation solution branches is called a bifurcation diagram.

The mapping g(u, ε) is assumed to be smooth in the sense that it has Fréchet

derivatives of any order. The first-order Fréchet derivative Dug(u0, ε0) of g(u, ε)

with respect to u at (u0, ε0) is a linear operator from X → Y such that

g(u, ε0) = g(u0, ε0) +Dug(u0, ε0)(u− u0) +O(|u− u0|) as |u− u0| → 0.

(4.56)

By the implicit function theorem, if Dug(u0, ε0) is non-invertible, there is no

unique way in which we can write u as function of ε in neighborhood of the

point (u0, ε0). In other words, there exist multiple solution branches in neighbor-
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hood of (u0, ε0). Therefore, a necessary condition for (u0, ε0) to be a bifurcation

point is that Dug(u0, ε0) be non-invertible.

For our case, the function g is the Euler-Lagrange equation given by (4.12),

u = (n1, n2, λ1, λ2, Λ1, Λ2) are the state variables and ε = (a, ζ, χ) represents the

bifurcation parameters. The Fréchet derivative Dug(u0, ε0) is obtained by lineariz-

ing the equilibrium equation (4.21) about the trivial solution u0 that is given by

n1 = n, n2 = Qn, λ1 = λ2 = λ, and Λ1 = Λ2 = Λ, where n is defined in (4.17),

and λ and Λ are provided in (4.32). The bifurcation parameters ε0 = (a, ζ, χ) are

such that Dug(u0, ε0) is non-invertible.

In other words, the dimensionless boundary-value problem consisting of

(3.24) and (4.12) has a nontrivial solution branch that bifurcates from the triv-

ial solution branch characterized by (4.17) and (4.32) only if the boundary-value

problem obtained by linearizing (3.24) and (4.5) about (4.17) and (4.32) has a non-

trivial solution.

Let v1 and v2 denote increments to n and Qn, respectively. Additionally, let

σi and Σi denote increments to λi and Λi, i = 1, 2, respectively. To be consistent

with the assumptions made in the linear stability analysis in the previous section,

we impose further restrictions on the perturbations v1 and v2 according to (4.36).

We substitute the quantities n1 = n + v, n2 = Qn + Qv, λi = λ + σi, and

Λi = Λ + Σi, i = 1, 2 in the equilibrium equations (4.12) and use the fact that n,

Qn, λ1 = λ2 = λ, and Λ1 = Λ2 = Λ defined in (4.32) satisfy (4.12). Ignoring the

quadratic and higher order terms in v, σi, and Σi and applying Q> to the second

of the equations obtained, we find the linearized equilibrium equations as

v′′′′ + λv′′ + Λv + σ′1n′ + σ1n′′ + Σ1n = ζϑ̃[n, n](v, v) + χϑ[n, Qn](v, Qv),

v′′′′ + λv′′ + Λv + σ′2n′ + σ2n′′ + Σ2n = ζQ>ϑ̃[Qn, Qn](Qv, Qv)

+ χQ>ϑ[Qn, n](Qv, v),





,

(4.57)
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where ϑ̃[ni, ni](vi, vi) and ϑ[ni, nj](vi, vj), i 6= j, are defined in (4.15) and (3.33),

respectively and the kernel F and H of the first and second of these functionals

are defined in (4.8)2. We also note that these functionals depend linearly on the

perturbation v. Using the elementary properties of Q in (4.20), we derived in (B.7)

that

Q>ϑ̃[Qn, Qn](Qv, Qv) = ϑ̃[n, n](v, v). (4.58)

Consistent with the assumptions followed in the stability analysis, we assume

that for nth mode of v, the perturbation of the two loops differ by a rotation

φn = π
n . Among all the values of φn, the repulsive interaction energy between the

perturbed curves n + εv and Qn + εQv, where ε is a small number, is minimized

for φn = π
n . Therefore, at φn = π

n , the equilibrium configuration will first bifurcate

into non trivial shape. Assuming this choice of φn, we show in (B.10) that

ϑ[n, Q>n](v, Q>v) = ϑ[n, Qn](v, Qv). (4.59)

Using (4.58) and (4.59) in (4.57)2 and comparing it with (4.57)1, we arrive at the

condition

σ′1n′ + σ1n′′ + Σ1n = σ′2n′ + σ2n′′ + Σ2n. (4.60)

We use the arguments provided to obtain (4.24) and (4.25), respectively and find

that the above equation yields

σ1 = σ2 = σ and Σ1 = Σ2 = Σ. (4.61)

In view of (4.58), (4.59), and (4.61), the linearized equilibrium equations (4.57)1

and (4.57)2 are equivalent. We may thus use either of these conditions to deter-

mine σ and Σ. Using (4.61) in the left-hand side of (4.57)1, substituting v defined

in (4.48) in (4.57)1 and resolving the resulting equation along the vectors e, k, and

k× e, we obtain three equations in terms of three unknowns ψ, σ and Σ.
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We use the Fourier representation for the functions ψ defined in (4.49), and

σ and Σ defined as

σ =
∞

∑
n=0

p cos
ns
a
+ q sin

ns
a

,

Σ =
∞

∑
n=0

u cos
ns
a
+ v sin

ns
a

,





, (4.62)

where n is a given mode number. Substituting these quantities in the resolved

equations and using the fact that coefficient of cos ns
a and sin ns

a independently

satisfy resolved equations, for each mode n, we get six equations in six unknowns

cn, dn, pn, qn, un and vn. Detailed derivation of these equations are provided in

the appendix C.

Granted that the mollifier M is given, the condition needed to ensure that the

homogeneous linear system for cn, dn, pn, qn, un and vn has a nontrivial solution

yields the equality in the stability condition (4.51) , i.e.,

χ = αn(a)ζ + βn(a), (4.63)

that involves the dimensionless radius a of the loops, the dimensionless param-

eters ζ and χ dictating the strengths of the repulsive intra- and inter-loop inter-

actions, and the mode number n. The non-invertibility of the Fréchet derivative

described earlier is equivalent to the condition (4.63) and is described in the ap-

pendix C.

The definition of lower envelope L(a) and the discussion regarding the in-

tersection between the Ln = αn(a)ζ + βn(a) corresponding to different modes for

a given a in the previous section holds true in the bifurcation analysis as well.

In Figure 4.7, we plot bifurcation diagram for two representative values, a =

0.6 and a = 0.9, of a and modes n = 2, . . . , 6. For a = 0.9, the circular configuration

will buckle in mode n = 2 for any value of ζ. In the case a = 0.6, for ζ up to point

P2, the circular configuration buckles in mode n = 2 and for ζ in the range Pn−1

and Pn, with n ≥ 3, the circular configuration will buckle in n-th mode.
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Figure 8: ⇣ versus � bifurcation plot for a = 0.6 and a = 0.9. For a = 0.9, the lower envelope is constituted by the curve
L2(0.9). However, for a = 0.6, the bifurcation plot consists of segments corresponding to di↵erent modes as shown.

6. Summary and discussion

We have used a variational model to study the equilibrium configuration and stability behavior of two
charged loops constrained to a sphere. In addition to the existing literature on elastic loop endowed with
curvature energy and constrained on a sphere, we have incorporated an interaction energy to the loops. Our
model involves five material parameters: the bending rigidity of the two loops µ1 and µ2, the self energy
coe�cient of the two loops A11 and A22 and the interaction energy parameter A12 between the two loops.
In combination with the length of the two loops L1 and L2 and radius of the sphere R, these quantities give
rise to six dimensionless parameters: the ratio of the bending modulus µ = µ2/µ1, the ratio of self energy
coe�cient and the bending modulus scaled with the radius of the sphere ⇣1 = A11R

3/µ1, ⇣2 = A22R
3/µ1,

the ratio of the interaction energy coe�cient and the bending modulus scaled with the radius of the sphere
� = A12R

3/µ1 and the ratio of the length of the loop to the radius of the sphere l1 = L1/R and l2 = L2/R.
We used the framework developed for two interacting curves to study a specialized system in which two
loops are identical. For such a specialized system, the number of dimensionless parameters reduces to
three: the ratio of the self energy coe�cient and the bending modulus scaled with the radius of the sphere
⇣ = A11R

3/µ1, the ratio of the interaction energy coe�cient and the bending modulus scaled with the radius
of the sphere � = A12R

3/µ1 and the ratio of the length of loop to the radius of the sphere l = L/R. We
studied the system for repulsive interactions, i.e., ⇣ > 0 and � > 0.

For the specialized system, the interplay between the three dimensionless parameters ⇣, � and a can
be seen in the stability plot. The self energy parameter ⇣ stabilizes the trivial solution since the circular
configuration has the minimum self energy. The two loops repel each other and therefore an increase in�

18

Figure 4.7: ζ versus χ bifurcation plot for a = 0.6 and a = 0.9. For a = 0.9,
the lower envelope is constituted by the curve L2(0.9). However, for
a = 0.6, the bifurcation plot consists of segments corresponding to
different modes as shown.

4.5 Conclusion

We studied a specialized system in which two loops are identical. For such

a specialized system, the number of dimensionless parameters reduces to three:

the ratio of the self energy coefficient and the bending modulus scaled with the

radius of the sphere ζ = A11R3/µ1, the ratio of the interaction energy coefficient

and the bending modulus scaled with the radius of the sphere χ = A12R3/µ1 and

the ratio of the length of loop to the radius of the sphere l = L/R. We studied the

system for repulsive interactions, i.e., ζ > 0 and χ > 0.

For the specialized system, the interplay between the three dimensionless
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parameters ζ, χ and a is shown in the stability plot Figure 4.6. The intra-loop

interaction parameter ζ stabilizes the trivial solution since the circular configura-

tion has the minimum self energy. The two loops repel each other and therefore

increase in χ destabilizes the trivial solution. Also, as the radius (dimensionless)

of the trivial solution increases, the loops move closer to each other. Therefore,

higher value of a destabilizes the trivial solution. In summary, an increase in ζ

stabilizes the trivial solution and an increase in χ and a destabilizes the trivial

solution.
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Chapter 5 Non-trivial equilibrium

solutions

5.1 Introduction

In this chapter, we provide the discretized description of the Euler–Lagrange

equations derived in chapter 4 for the special case where the two loops C1 and

C2 are uniformly charged, have the same length, bending moduli, and interaction

parameters, so that

L1 = L2 = L, µ1 = µ2 = µ, and A11 = A22 = A, (5.1)

and, thus are both geometrically and physically indistinguishable. With this sim-

plification, the general problem formulated in the previous chapter reduced to

one involving only a single dimensionless measure of length, namely

a =
L

2πR
(5.2)

and two dimensionless measures of energy, namely

ζ =
R3A

µ
and χ =

R3A12

µ
. (5.3)

We had imposed further restriction 0 < a < 1 and hence L < 2πR on the length

of the loops in chapter 4 to ensure the existence of the trivial solution in form of

a pair of circular loops. In this chapter, we allow a > 1 so that the loops can have

length longer that the perimeter 2πR of the great circle.

5.2 Equilibrium equations

We restrict our study to find equilibrium configurations C∗1 and C∗2 of the

loops C1 and C2, respectively that are n-fold symmetric which implies that the

53



A
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C2

R
|

ı

k

P

Figure 3: Circular loops C1 and C2 of dimensionless length 2⇡a, with 0 < a < 1, situated on opposing planes parallel to an
equatorial plane of a sphere S, of radius R, at respective altitudes R

p
1 � a2 and �R

p
1 � a2. The vector field e describes the

restriction to the equatorial great circle of the outward unit normal to S.

and, Q defined by

Q(�) = cos�(ı ⌦ ı + |⌦ |) � sin�(ı ⌦ |� |⌦ ı) � 2k ⌦ k, 0    2⇡ (49)

is the orthogonal tensor transforms any vector by simulataneously reflecting it across A and rotating it
counterclockwise by � about A. The elementary properties of Q that are useful for further calculations are

|Qm| = |m| and Q>Q = . (50)

We substitute the particular choices (47) of n1 and n2 in the equilibrium equations (42) and make simplifi-
cations by applying Q> to second of the equations obtained by using (50), leading to

(n000 + �⇤1n
0)0 + ⇤⇤

1n = ⇣

Z 2⇡a

0

M
⇣ |s̄ � s|

2a

⌘ n � n(s̄)

|n � n(s̄)| ds̄ + �

Z 2⇡a

0

n � Qn(s̄)

|n � Qn(s̄)| ds̄,

(n000 + �⇤2n
0)0 + ⇤⇤

2n = ⇣

Z 2⇡a

0

M
⇣ |s̄ � s|

2a

⌘ n � n(s̄)

|n � n(s̄)| ds̄ + �

Z 2⇡a

0

n � Q>n(s̄)

|n � Q>n(s̄)| ds̄,

9
>>>=
>>>;

(51)

where ⇤⇤
i and �⇤i are the Lagrange multipliers, as yet undetermined, needed to ensure the circular loop C⇤

i ,
i = 1, 2, is configured in consistency with the constraints (4)1 and (4)2, respectively. Next, since

Q>(�)n(s + 2a�) = Q(�)n(s), 0  s  2⇡a, (52)

we may use the change of variables s̄ ! s̄+2a� in the second integral on the right-hand side of (51)2 to find
that, since n is periodic on the interval from 0 to 2⇡a,

Z 2⇡a

0

n � Q>n(s̄)

|n � Q>n(s̄)| ds̄ =

Z 2(⇡+�)a

2�a

n � Qn(s̄)

|n � Qn(s̄)| ds̄ =

Z 2⇡a

0

n � Qn(s̄)

|n � Qn(s̄)| ds̄. (53)

Using (53) in (51)2 and subtracting the resulting equation from (51)1, we obtain the condition

�⇤1n
00 + (�⇤1)

0n0 + ⇤⇤
1n = �⇤1n

00 + (�⇤2)
0n0 + ⇤⇤

2n. (54)

Computing the dot product with k on both sides of (54) while noting from (48) that k ·n0 = 0 and k ·n00 = 0,
we find that

⇤⇤
1 = ⇤⇤

2 = ⇤. (55)

10

Figure 5.1: Schematic of a 2-fold configuration of C1 and C2 situated on opposing
sides to an equatorial plane of a sphere S , of radius R. C2 is rotated
with respect to C1 angle φ2 = π

2 about the polar axis A. The vector
field ı and  are orthogonal unit vectors in the equatorial plane and
the vector field k is the unit vector along the polar axis.

curvature of C∗1 and C∗2 has period π
n . Moreover, we assume that C∗1 and C∗2 differ

only by a rigid transformation consisting of a reflection across the equatorial plane

P of S and a rotation, by a particular angle φn = π
n , about the polar axis A of S

as shown in the schematic 5.1 using 2- fold configuration as an example. We may

therefore choose the quantities n∗1 and n∗2 that parametrize C∗1 and C∗2 to be of the

form

n∗1 = n and n∗2 = Qn, (5.4)

where n is a unit normal to the sphere S and, Q defined by

Q(φn) = cos φn(ı⊗ ı + ⊗ )− sin φn(ı⊗ − ⊗ ı)− 2k⊗ k, 0 ≤ ψ ≤ 2π (5.5)

is the orthogonal tensor that transforms any vector by simultaneously reflecting

it across A and rotating it counterclockwise by φn about A. We substitute the

particular choices (5.4) of n1 and n2 in the equilibrium equations (4.12) and make

simplifications by applying Q> to second of the equations obtained by using (4.20),
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leading to

(n′′′ + λ∗1n′)′ + Λ∗1n = ζ
∫ 2πa

0
M
( |s̄− s|

2a

) n− n(s̄)
|n− n(s̄)| ds̄

+ χ
∫ 2πa

0

n−Qn(s̄)
|n−Qn(s̄)| ds̄,

(n′′′ + λ∗2n′)′ + Λ∗2n = ζ
∫ 2πa

0
M
( |s̄− s|

2a

) n− n(s̄)
|n− n(s̄)| ds̄

+ χ
∫ 2πa

0

n−Q>n(s̄)
|n−Q>n(s̄)| ds̄,





,

where Λ∗i and λ∗i are the Lagrange multipliers, as yet undetermined, needed

to ensure the circular loop C∗i , i = 1, 2, is configured in consistency with the

constraints (3.4)1 and (3.4)2, respectively. Next, since φn = π
n ,

Q>(φ)n(s + 2aφ) = Q(φ)n(s), 0 ≤ s ≤ 2πa. (5.6)

We remark that while (5.6) is valid on for φn = π
n and n being an n− fold sym-

metric configuration, the analogous relation (4.21) for the trivial configuration n

in the chapter 2 is valid for any arbitrary angle φ.

Using (5.6) and a change of variables s̄ → s̄ + 2aφn in the second integral on

the right-hand side of (5.6)2 we find that, since n is periodic on the interval from

0 to 2πa,
∫ 2πa

0

n−Q>n(s̄)
|n−Q>n(s̄)| ds̄ =

∫ 2(π+φn)a

2φna

n−Qn(s̄)
|n−Qn(s̄)| ds̄ =

∫ 2πa

0

n−Qn(s̄)
|n−Qn(s̄)| ds̄. (5.7)

Using (5.7) in (5.6)2 and subtracting the resulting equation from (5.6)1, we obtain

the condition

λ∗1n′′ + (λ∗1)
′n′ + Λ∗1n = λ∗1n′′ + (λ∗2)

′n′ + Λ∗2n. (5.8)

Using the restriction that n conforms to S and is inextensible, we get

n · n = 1 and n′ · n′ = 1. (5.9)

Combination of the arc length derivative of (5.9)1 and (5.9)2 yields

n · n′ = 0, n · n′′ = −1, and n′ · n′′ = 0. (5.10)
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Computing the dot product on both side of (5.8) with n, n′, and n′′ respectively

and using (5.10), we get

Λ∗1 − λ∗1 = Λ∗1 − λ∗1 , (5.11)

(λ∗1)
′ = (λ∗2)

′, and (5.12)

(n′′ · n′′)λ∗1 −Λ∗1 = (n′′ · n′′)λ∗2 −Λ∗2 . (5.13)

Combination of (5.11) and (5.13) yield

(n′′ · n′′ − 1)(λ∗1 − λ∗2) = 0. (5.14)

For the case n′′ · n′′ = 1 at each point on a curve n which represents the great

circle of the unit circle, λ∗1 and λ∗2 and with (5.11), Λ∗1 and Λ∗2 differ by a constant.

For any other curve n, (5.14) and (5.11) yield

λ∗1 = λ∗2 = λ and Λ∗1 = Λ∗2 = Λ. (5.15)

In view of (5.15), (5.7) and (5.6), the equilibrium equation (5.6)1 and (5.6)2 are

equivalent and we can use either of these equations to determine λ and Λ. Sub-

stituting λ∗1 = λ and Λ∗1 = Λ in (5.6)1 and expanding the derivatives on left hand

side of the resulting equation, we get

n′′′′+λn′′+λ′n′+Λn = ζ
∫ 2πa

0
M
( |s̄− s|

2a

) n− n(s̄)
|n− n(s̄)| ds̄+χ

∫ 2πa

0

n−Qn(s̄)
|n−Qn(s̄)| ds̄.

(5.16)

5.3 Discretization

We discretize the dimensionless length ` = 2πa of the loops C∗1 and C∗2 pa-

rameterized by n and Qn, respectively into N equal intervals. Segments in each

interval are of equal arc length h = `
N . The quantities n, λ and Λ evaluated at

the ith nodal point are respectively denoted by n(i), λ(i), and Λ(i). For a closed
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curve n, N + 1th point is identical to the first point which leads to

n(N + 1) = n(1), λ(N + 1) = λ(1), and λ(N + 1) = λ(1). (5.17)

Therefore, we only need to solve the equilibrium equation (5.16) for at nodal

points i ∈ [1, N]. We use the following finite difference scheme to discretize the

derivatives on the left hand side of (5.16)

λ(i)′ =
−λ(i + 2) + 8λ(i + 1)− 8λ(i− 1) + λ(i− 2)

12h
+O[h4], (5.18)

n(i)′ =
−n(i + 2) + 8n(i + 1)− 8n(i− 1) + n(i− 2)

12h
+O[h4], (5.19)

n(i)′′ =
−n(i + 2) + 16n(i + 1)− 30n(i) + 16n(i− 1)− n(i− 2)

12h2 +O[h4], (5.20)

n(i)′′′ =
n(i + 2)− 2n(i + 1) + 2n(i− 1)− n(i− 2)

2h3 +O[h2], and (5.21)

n(i)′′′′ =
n(i + 2)− 4n(i + 1) + 6n(i)− 4n(i− 1) + n(i− 2)

h4 +O[h2], i ∈ [1, N].

(5.22)

Although the quantities n(i) and λ(i) are defined for i ∈ [1, N + 1], we note that

the right hand side terms in the above discretization scheme will encounter the

additional, yet undefined terms n(0), n(−1), λ(0), λ(−1), n(N + 2), and λ(N + 2).

For a closed curve n it follows that

n(0) = n(N), n(−1) = n(N − 1), λ(0) = λ(N), λ(−1) = λ(N − 1), (5.23)

and

n(N + 2) = n(2), and λ(N + 2) = λ(2). (5.24)

In §4.2.1 of chapter 4, we discussed the need for regularization of singularity of

the intra-loop interaction potential. In a discretized description, we can avoid the

singularity at each nodal point i by replacing the first integral on right hand side

of (5.16) with trapezoidal rule of integration

h
N

∑
j=1
j 6=i

n(i)− n(j)
|n(i)− n(j))| , (5.25)
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where we have used the fact that (N + 1)th point is identical to the 1st point and

we have skipped the summation over the element at ith node.

Also, the second integral on the right hand side of (5.16) can be evaluated as

∫ 2πa

0

n−Qn(s̄)
|n−Qn(s̄)| ds̄ = h

N

∑
j=1

n(i)−Qn(j)
|n(i)−Qn(j))| . (5.26)

Substituting the first integral in right hand side of (5.16) with (5.25), substituting

(5.26) in (5.16), we obtain three equation at each nodal point i,

n′′′′(i) + λ(i)n′′(i) + λ′(i)n′(i) + Λ(i)n(i)

= hζ

N

∑
j=1
j 6=i

n(i)− n(j)
|n(i)− n(j))| + χh

N

∑
j=1

n(i)−Qn(j)
|n(i)−Qn(j))| , (5.27)

n(i) · n(i) = 1, (5.28)

and

n′(i) · n′(i) = 1 (5.29)

in terms of three unknowns n(i), λ(i) and Λ(i).

5.4 Re-parameterization using spherical angles

The position vector n restricted to S can be described in terms of arc length

dependent polar and azimuthal angles θ and φ as

n(s) = sin θ(s) cos φ(s)ı + sin θ(s) sin φ(s) + cos θ(s)k. (5.30)

Equivalently, n at ith node can be described in terms of value the functions θ and

φ at ith node as

n(i) = sin θ(i) cos φ(i)ı + sin θ(i) sin φ(i) + cos θ(i)k. (5.31)

58



This parameterization ensures that the restriction of n(i), i ∈ [1, N] to the sphere

S is naturally satisfied. Defining the vectors

eθ(i) = cos θ(i) cos φ(i)ı + cos θ(i) sin φ(i)− sin θ(i)k and (5.32)

eφ(i) = − sin φ(i)ı + cos φ(i), (5.33)

we find that

n(i) · eθ(i) = 0 and n(i) · eφ(i) = 0. (5.34)

Computing the dot product on both side of (5.27) with eθ(i) and eφ(i) respectively,

using (5.34) and noting that (5.28) is trivially satisfied, we find at each nodal point

i ∈ [1, N] three equations

[n′′′′(i) + λ(i)n′′(i) + λ′(i)n′(i)] · eθ(i)

= hζ

N

∑
j=1
j 6=i

(n(i)− n(j)) · eθ(i)
|n(i)− n(j))| + χh

N

∑
j=1

(n(i)−Qn(j)) · eθ(i)
|n(i)−Qn(j))| , (5.35)

[n′′′′(i) + λ(i)n′′(i) + λ′(i)n′(i)] · eφ(i)

= hζ

N

∑
j=1
j 6=i

(n(i)− n(j)) · eφ(i)
|n(i)− n(j))| + χh

N

∑
j=1

(n(i)−Qn(j)) · eφ(i)
|n(i)−Qn(j))| , (5.36)

and

n′(i) · n′(i) = 1, (5.37)

in terms of three unknowns θ(i), φ(i) and λ(i) for i ∈ [1, N]. Once we have

obtained the equilibrium solution, we can compute the dot product on both sides

of (5.27) with n(i) and use (5.10) to make further simplifications and find the

Lagrange multiplier Λ(i) as

Λ(i) = λ(i)− n′′′′(i) · n(i) + hζ

N

∑
j=1
j 6=i

1− n(j) · n(i)
|n(i)− n(j))| + χh

N

∑
j=1

1−Qn(j) · n(i)
|n(i)−Qn(j))| . (5.38)
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In the view of bending energy, self energy and the interaction energy defined in

(3.21a), (3.21b), and (3.21c), the total dimensionless energy (3.20) can be expressed

as function of total dimensionless length of the loop Nh, intra-loop interaction

parameter ζ, and the inter-loop interaction parameter χ as

F (Nh, ζ, χ) = h
N

∑
i=1

(
n′′(i) ·n′′(i)+ hζ

N

∑
j=1
j 6=i

1
|n(i)− n(j))| +

χ

2
h

N

∑
j=1

1
|n(i)−Qn(j))|

)
.

(5.39)

5.5 Numerical experiment

We solve the system of equilibrium equations (5.35)-(5.37) for different set of

the dimensionless parameters (a, ζ, χ). For all the numerical solutions, we used

N = 100 and fsolve package from Matlab.

5.5.1 Effect of χ

To show the effect of the inter-loop repulsion parameter χ, we choose a = 0.9,

ζ = 0 and χ = 6, 8, and 10. These values of χ are chosen so that the 2-fold, 3-fold,

and 4-fold solutions can co-exist. For example, for χ > 10, we could not find

a 2-fold equilibrium solution. Similarly, for χ < 6, we could not find any 4-fold

solutions and various initial guesses converged to the trivial (circular) equilibrium

configuration.

In figure 5.2, we show the equilibrium solution for each set of parameters de-

scribed above. For 2-fold, 3-fold as well as 4-fold solutions, we find that the equi-

librium configuration adopt a more ’squeezed in’ configuration as χ increased.

We compute the total energy of the equilibrium configuration using (5.39) and list

it in 5.1. Within each of the n-fold solution, n = 2, 3, 4, the total energy increases

monotonically with χ. However, for a given value of χ, there is no such mono-
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tonicity among 2-fold, 3-fold, and 4-fold equilibrium solutions. For each value

of χ, 2-fold solution has the minimum energy among 2-fold, 3-fold and 4 fold

solutions. Also, 3-fold solution has maximum energy for χ = 6 and χ = 8 while

4-fold has the maximum energy for χ = 10.

� = 6

� = 8

� = 10

2-fold 3-fold 4-fold

Side
view

Top
view

Figure 3: Circular loops C1 and C2 of dimensionless length 2⇡a, with 0 < a < 1, situated on opposing planes parallel to an
equatorial plane of a sphere S, of radius R, at respective altitudes R

p
1 � a2 and �R

p
1 � a2. The vector field e describes the

restriction to the equatorial great circle of the outward unit normal to S.

2-fold 3-fold 4-fold

Side
view

Top
view

Figure 4: Circular loops C1 and C2 of dimensionless length 2⇡a, with 0 < a < 1, situated on opposing planes parallel to an
equatorial plane of a sphere S, of radius R, at respective altitudes R

p
1 � a2 and �R

p
1 � a2. The vector field e describes the

restriction to the equatorial great circle of the outward unit normal to S.

Let {ı, |, k} be a positively-oriented orthonormal basis with k directed upward along the polar axis A of

10

Figure 5.2: 2-fold, 3-fold, and 4-fold equilibrium configuration for a = 0.9, ζ = 0
and three representative values, χ = 6, 8, and 10 of χ. For each set
(a, ζ, χ), 2-fold, 3-fold, and 4-fold solution co-exist. In the top view for
each n-fold solution, we indicate that value of χ is increasing in the
direction of arrow.

Table 5.1: Total dimensionless energy for 2-fold, 3-fold and 4-fold equilibrium so-
lution for the set of parameters a = 0.9, ζ = 0, and χ = 6, 8, and 10.

χ 2-fold 3-fold 4-fold

6 75.2952 78.1006 75.4863

8 96.0244 101.4535 101.1663

10 116.2028 123.9105 125.8186

61



5.5.2 Effect of ζ

To demonstrate the effect of the intra-loop interaction parameter ζ, we use

a = 0.9, χ = 10, and compute 2-fold equilibrium solution for three representative

values, ζ = 0, 4, and 8 of ζ. As shown in the figure 5.3, the equilibrium configura-

tion approaches toward the trivial (circular) configuration as ζ is increased which

due the fact that the repulsive force among the elements of the loop increase with

ζ driving the loops to adopt a more open configuration.

� = 6

� = 8

� = 10

2-fold 3-fold 4-fold

Side
view

Top
view

Figure 3: Circular loops C1 and C2 of dimensionless length 2⇡a, with 0 < a < 1, situated on opposing planes parallel to an
equatorial plane of a sphere S, of radius R, at respective altitudes R

p
1 � a2 and �R

p
1 � a2. The vector field e describes the

restriction to the equatorial great circle of the outward unit normal to S.

⇣ = 0

⇣ = 4

⇣ = 8

Side view Top view

Figure 4: Circular loops C1 and C2 of dimensionless length 2⇡a, with 0 < a < 1, situated on opposing planes parallel to an
equatorial plane of a sphere S, of radius R, at respective altitudes R

p
1 � a2 and �R

p
1 � a2. The vector field e describes the

restriction to the equatorial great circle of the outward unit normal to S.

Let {ı, |, k} be a positively-oriented orthonormal basis with k directed upward along the polar axis A of
S. Then, e defined by

e(s) =
⇣

cos
s

a

⌘
ı +

⇣
sin

s

a

⌘
|, 0  s  2⇡a, (46)

represents the restriction to the equatorial great circle of the outward unit normal to S. We suppose that

10

Figure 5.3: 2-fold equilibrium configuration for a = 0.9, χ = 10 and three repre-
sentative values, ζ = 0, 4, and 8 of ζ. In the top view, we indicate that
value of ζ is increasing in the direction of arrow.

5.5.3 Loops with parameter a > 1

For a > 1, the total length of the loop is longer than perimeter of the great

circle. Therefore, no trivial equilibrium solution in form of a pair of circular loop

is feasible. We first find the equilibrium configuration for pure elastica in which

62



case ζ = 0 and χ = 0 and thus the equilibrium equations (5.35)-(5.37) reduce to

[n′′′′(i) + λ(i)n′′(i) + λ′(i)n′(i)] · eθ(i) = 0, (5.40)

[n′′′′(i) + λ(i)n′′(i) + λ′(i)n′(i)] · eφ(i) = 0, and (5.41)

n′(i) · n′(i) = 1. (5.42)

In figure 5.4, we show the 2-fold, 3-fold and 4-fold equilibrium solutions for a =

1.3 and ζ = χ = 0.

2-fold 3-fold 4-fold

Side
view

Top
view

Figure 3: Circular loops C1 and C2 of dimensionless length 2⇡a, with 0 < a < 1, situated on opposing planes parallel to an
equatorial plane of a sphere S, of radius R, at respective altitudes R

p
1 � a2 and �R

p
1 � a2. The vector field e describes the

restriction to the equatorial great circle of the outward unit normal to S.

� = 0

� = 2
Side view Top view

Figure 4: Circular loops C1 and C2 of dimensionless length 2⇡a, with 0 < a < 1, situated on opposing planes parallel to an
equatorial plane of a sphere S, of radius R, at respective altitudes R

p
1 � a2 and �R

p
1 � a2. The vector field e describes the

restriction to the equatorial great circle of the outward unit normal to S.

Let {ı, |, k} be a positively-oriented orthonormal basis with k directed upward along the polar axis A of
S. Then, e defined by

e(s) =
⇣

cos
s

a

⌘
ı +

⇣
sin

s

a

⌘
|, 0  s  2⇡a, (46)

represents the restriction to the equatorial great circle of the outward unit normal to S. We suppose that
the loops are circles — denoted by C⇤

1 and C⇤
2 — of radius Ra that reside in planes parallel to and separated

from P by the distance R
p

1 � a2. The total energy of this configuration does not change on fixing one loop
and rotating the other loop by an arbitrary angle about A. We may therefore choose the quantities n⇤

1 and

10

Figure 5.4: 2-fold, 3-fold, and 4-fold equilibrium configuration for a = 1.3, ζ = 0,
and χ = 0.
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To demonstrate the effect of inter-loop interaction parameter χ, we show

the 2-fold equilibrium solution for a = 1.1, ζ = 0 and two values of χ, χ = 0

and χ = 2 in the figure 5.5. The inter-loop repulsion between the two loops

(shown with red color ) drives the equilibrium solution toward a squeezed-in

configuration compared to the case where χ = 0.

� = 0

� = 2
Side view Top view

Figure 4: Circular loops C1 and C2 of dimensionless length 2⇡a, with 0 < a < 1, situated on opposing planes parallel to an
equatorial plane of a sphere S, of radius R, at respective altitudes R

p
1 � a2 and �R

p
1 � a2. The vector field e describes the

restriction to the equatorial great circle of the outward unit normal to S.

where ⇤⇤
i and �⇤i are the Lagrange multipliers, as yet undetermined, needed to ensure the circular loop C⇤

i ,
i = 1, 2, is configured in consistency with the constraints (4)1 and (4)2, respectively. Next, since

Q>(�)n(s + 2a�) = Q(�)n(s), 0  s  2⇡a, (52)

we may use the change of variables s̄ ! s̄+2a� in the second integral on the right-hand side of (51)2 to find
that, since n is periodic on the interval from 0 to 2⇡a,

Z 2⇡a

0

n � Q>n(s̄)

|n � Q>n(s̄)| ds̄ =

Z 2(⇡+�)a

2�a

n � Qn(s̄)

|n � Qn(s̄)| ds̄ =

Z 2⇡a

0

n � Qn(s̄)

|n � Qn(s̄)| ds̄. (53)

Using (53) in (51)2 and subtracting the resulting equation from (51)1, we obtain the condition

�⇤1n
00 + (�⇤1)

0n0 + ⇤⇤
1n = �⇤1n

00 + (�⇤2)
0n0 + ⇤⇤

2n. (54)

Computing the dot product with k on both sides of (54) while noting from (48) that k ·n0 = 0 and k ·n00 = 0,
we find that

⇤⇤
1 = ⇤⇤

2 = ⇤. (55)

Similarly, computing the dot product with n00 on both sides of (54), noting that di↵erentiating (4)1 twice and
using (4)2 yields n·n00 = �1 and di↵erentiating (4)2 yields n0·n00 = 0, we find that �⇤1|n00|2�⇤⇤

1 = �⇤2|n00|2�⇤⇤
2

and, thus, by (55), that
�⇤1 = �⇤2 = �. (56)

11

Figure 5.5: 2-fold equilibrium configuration for a = 1.1, ζ = 0 and two values of
χ, χ = 0 and χ = 2. In the case χ = 0, two loops can orient with
respect to each other in arbitrary fashion. Therefore only one of the
loop is shown.
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5.6 Discussion

In this chapter, we derived the discretized form of the Euler–Lagrange equa-

tion for two loops that are uniformly charged, have same bending modulus and

same charge density and posses n-fold symmetry. We showed the effect of intra-

loop and inter-loop interaction parameters on the equilibrium configurations. Al-

though, we have shown the equilibrium solutions for only a limited set of pa-

rameters, this framework provides the basis for computing multiple, co-existing

equilibrium solutions for a given set of parameters and thus finding a global min-

imum energy solution.

It is likely that there is a range of parameters a, ζ, χ outside which a par-

ticular n-fold symmetry solution does not exist. For example, we were unable to

find a convergent 2-fold solution for a = 0.9, ζ = 0, and χ > 10. It is possible

that a 2-fold symmetry configuration squeezing further from the equilibrium con-

figuration at χ = 10 may not maintain the point-wise inextensibility constraint.

Therefore, for a = 0.9, ζ = 0, and χ > 10, a 2-fold equilibrium solution may

not exist. Also, we were unable to find a 4-fold equilibrium solution for a = 0.9,

ζ = 0, and χ < 6. More conclusive arguments can be made by computing the

equilibrium solutions over a large set of parameters a, ζ, and χ.
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Chapter 6 Summary and Future work

6.1 Summary

In this study, we derived a variational framework to model a pair of charged

curves that are constrained to a sphere. We showed how the competing factors

namely the bending rigidity of the curves, intra-loop interaction, the inter-loop

interaction and point-wise inextensibility of the loops govern the equilibrium con-

figuration and its stability. We derived the discretized Euler–Lagrange equations

that enabled us to find non-trivial equilibrium shapes. We showed that for a

given dimensionless length of the loop, the intra-loop interaction parameter, and

the inter-loop interaction parameter, there can exist one or more n-fold equilib-

rium solutions. Global minimum energy solution can be obtained by comparing

the total dimensionless energy of the co-existing equilibrium solutions.

6.2 Future Work

Going forward, a few of the possible directions are as follows. Most of the

proteins are made up of segments with alternating positive and negative charge

densities. It would be interesting to computing the equilibrium solutions for loops

with such charge distribution.

In some cases, helicity of the peptide molecules constrained to a membrane

and hence the orientation of the cross section of the peptides can play crucial

role in deciding the equilibrium configuration. We can incorporate this effect by

working with charged rods instead of charged loops that have been considered in

our work.

Another possible direction would be to consider the deformation of the sur-
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face to which the charged loops are constrained. In addition to the factors con-

sidered in this work, the elasticity of the surface will also govern the over all

equilibrium shape and can provide a more realistic model of proteins attached to

a flexible membrane.
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Appendix A Derivation of the first and

second variation conditions

A.1 Bending energy

From the identity (3.6) and the constraints (3.24), the first variation of the

geodesic curvature squared yields

δκ2
i = 2(n′′i + ni) · (v′′i + vi)

= 2(n′′i · v′′i + ni · vi + ni · v′′i + n′′i · vi)

= 2n′′i · v′′i + δ(ni · ni) + 2δ(ni · n′′i )

= 2n′′i · v′′i . (A.1)

Using above relation, the first variation of FB defined in (3.21a) is given as

δFB[n1, n2] =
∫ `1

0
n′′1 · v′′1 ds + ν

∫ `2

0
n′′2 · v′′2 ds

=
∫ `1

0
−n′′′1 · v′1 ds + ν

∫ `2

0
−n′′′2 · v′2 ds + n′′1 · v′1|`1

0 + νn′′2 · v′2|`2
0 . (A.2)

Adding the constraints (3.24)1 and (3.24)2 with Langrange multipliers Λi and λi,

respectively yields

δFB[n1, n2]

=
∫ `1

0
((n′′′1 + λ1n1)

′ + Λ1n1) · v1 ds + ν
∫ `2

0
((n′′′2 + λ2n2)

′ + Λ2n2) · v2 ds

+ n′′1 · v′1|`1
0 − (n′′′1 + λ1n1) · v1|`1

0 + νn′′2 · v′2|`2
0 − ν(n′′′2 + λ2n2) · v2|`2

0 .
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A.2 Intra-loop and Inter-loop interaction energy

The first variation of the intra-loop interaction energy for Ci, i = 1, 2 is

δ
∫ `i

0

∫ `i

0
f (|ni(s)− ni(s̄)|)ds̄ ds

=
∫ `i

0

∫ `i

0

(
d f ($)

d$

$

$
· (vi(s)− vi(s̄))

) ∣∣∣∣$=ni(s)−ni(s̄),
$=|$|

ds̄ ds

= 2
∫ `i

0

∫ `i

0

(
d f ($)

d$

$

$
· vi(s)

) ∣∣∣∣$=ni(s)−ni(s̄),
$=|$|

ds̄ ds. (A.3)

The first variation of the inter-loop interaction energy is

δ
∫ `1

0

∫ `2

0
h(|n1(s)− n2(s̄)|)ds̄ ds

=
∫ `1

0

∫ `2

0

(
dh($)

d$

$

$
· (v1(s)− v2(s̄))

) ∣∣∣∣$=n1(s)−n2(s̄),
$=|$|

ds̄ ds

=
∫ `1

0

∫ `2

0

(
dh($)

d$

$

$
· v1(s)

) ∣∣∣∣$=n1(s)−n2(s̄),
$=|$|

ds̄ ds

+
∫ `2

0

∫ `1

0

(
dh($)

d$

$

$
· v2(s)

) ∣∣∣∣$=n2(s)−n1(s̄),
$=|$|

ds̄ ds. (A.4)

Defining

ϕ[ni, nj] =





−
∫ `j

0
f (ni − nj(s̄))ds̄ i = j,

−
∫ `j

0
h(ni − nj(s̄))ds̄ i 6= j,

(A.5)

where i, j = 1, 2 and f and h are defined such that

f ($) =
d f ($)

d$

∣∣∣∣
$=|$|

$

|$| , and h($) =
dh($)

d$

∣∣∣∣
$=|$|

$

|$| , (A.6)

the first variation of the intra-loop interaction energy (self -energy) (A.3) and the

inter-loop interaction energy (A.4) can be written as

δFS[n1, n2] = −ζ1

∫ `1

0
ϕ[n1, n1] · v1 ds− ζ2

∫ `2

0
ϕ[n2, n2] · v2 ds, (A.7)

and

δFI[n1, n2] = −χ
∫ `1

0
ϕ[n1, n2] · v1 ds− χ

∫ `2

0
ϕ[n2, n1] · v2 ds. (A.8)
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Combining the δFB, δFS, and δFI, the first variation of the total energy functional

is given as

δF [n1, n2](v1, v2) =
∫ `1

0
((n′′′1 + λ1n′1)

′ + Λ1n1 − ζ1ϕ[n1, n1]− χϕ[n1, n2]) · v1 ds

+
∫ `2

0
(ν(n′′′2 + λ2n′2)

′ + Λ2n2 − ζ2ϕ[n2, n2]− χϕ[n2, n1]) · v2 ds

+ n′′1 · v′1|`1
0 − (n′′′1 + λ1n′1) · v1|`1

0 + νn′′2 · v′2|`2
0 − ν(n′′′2 + λ2n′2) · v2|`2

0 . (A.9)

For (n1, n2) to be the equilibrium configuration, the first variation condition re-

quires that δF [n1, n2](v1, v2) = 0, ∀ v1, v2 that yields the equilibrium equations

(n′′′1 + λ1n′1)
′ + Λ1n1 = ζ1ϕ[n1, n1] + χϕ[n1, n2],

ν(n′′′2 + λ2n′2)
′ + Λ2n2 = ζ2ϕ[n2, n2] + χϕ[n2, n1],





, (A.10)

and the boundary conditions

n′′1 · v′1|`1
0 − (n′′′1 + λ1n′1) · v1|`1

0 = 0,

n′′2 · v′2|`2
0 − (n′′′2 + λ2n′2) · v2|`2

0 = 0,





. (A.11)

For smooth, closed curves, the boundary terms are trivially satisfied. The second

variation of the energy functional is obtained as

δ2F [n1, n2](v1, v2) =
∫ `1

0
((n′′′1 +λ1n′1)

′+Λ1n1− ζ1ϕ[n1, n1]−χϕ[n1, n2]) · δv1 ds

+
∫ `2

0
(ν(n′′′2 + λ2n′2)

′ + Λ2n2 − ζ2ϕ[n2, n2]− χϕ[n2, n1]) · δv2 ds

+
∫ 2πa

0
(|v′′1 |2 − λ1|v′1|2 + (λ′1v′1 + Λ1v1 − ζϑ[n1, n1](v1, v1)

− χϑ[n1, n2](v1, v2)) · v1)ds

+
∫ 2πa

0
((|v′′2 |2 − λ2|v′2|2) + (λ′2v′2 + Λ2v2 − ζϑ[n2, n2](v2, v2)

− χϑ[n2, n1](v2, v1)) · v2)ds, (A.12)
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where ϑ is defined by

ϑ[ni, nj](vi, vj) =





−
∫ `j

0
F(ni − nj(s̄))(vi − v(s̄)j)ds̄ i = j,

−
∫ `j

0
H(ni − nj(s̄))(vi − v(s̄)j)ds̄ i 6= j,

(A.13)

where i, j = 1, 2, and F and H are defined such that

F[$] =
1
$

(d f ($)
d$

1 +
d

d$

(1
$

d f ($)
d$

)
$⊗$

)∣∣∣
$=|$|

, (A.14)

and

H[$] =
1
$

(dh($)
d$

1 +
d

d$

(1
$

dh($)
d$

)
$⊗$

)∣∣∣
$=|$|

. (A.15)

Using (A.10), the second variation (A.12) evaluated at equilibrium simplifies to

δ2F [n1, n2](v1, v2) =
∫ 2πa

0
(|v′′1 |2 − λ1|v′1|2 + (λ′1v′1 + Λ1v1 − ζϑ[n1, n1](v1, v1)

− χϑ[n1, n2](v1, v2)) · v1)ds

+
∫ 2πa

0
((|v′′2 |2 − λ2|v′2|2) + (λ′2v′2 + Λ2v2 − ζϑ[n2, n2](v2, v2)

− χϑ[n2, n1](v2, v1)) · v2)ds. (A.16)

A.3 Open curve

For a single, charged polyelectrolyte, confined to a sphere, the energetics of

the system includes bending of the curve and the self energy of the curve. In

such situation, the equilibrium equation (A.10), the boundary condition (A.11),

and the stability condition (A.12) for chain of length ` and intra-loop interaction

parameter ζ reduce to be

(n′′′ + λn′)′ + Λn1 = ζϕ[n, n], (A.17)

n′′ · v′|`0 − (n′′′ + λn′) · v|`0 = 0, (A.18)
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and
∫ `

0
(|v′′|2 − λ|v′|2 + (λ′v′ + Λv− ζϑ[n, n](v, v) ≥ 0, (A.19)

respectively, where the functionals ϕ and ϑ are defined in (A.5) and (A.13). The

Lagrange multipliers λ and Λ ensure the satisfaction of constraints n · v = 0 and

n′ · v′ = 0 respectively.
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Appendix B Second variation condition

for the specialized case

Substituting n1 = n, n2 = Qn, v1 = v, v2 = Qv, λ1 = λ2 = λ, and Λ1 = Λ2 =

Λ in (4.14) and noting that the λ and Λ are uniform for the trivial configuration,

we find the reduced form of the second variation condition at the equilibrium as

∫ 2πa

0
(|v′′|2 − λ|v′|2 + (Λv− ζϑ̃[n, n](v, v)− χϑ[n, Qn](v, Qv)) · v)ds

+
∫ 2πa

0
((|Qv′′|2 − λ|Qv′|2) + (ΛQv− ζϑ̃[Qn, Qn](Qv, Qv)

− χϑ[Qn, n](Qv, v)) ·Qv)ds ≥ 0, (B.1)

where

ϑ̃[n, n](v, v)

=
∫ 2πa

0
M
( |s̄− s|

2a

)( (v− v(s̄))
|n− n(s̄)|3 + 3

(n · v(s̄) + n(s̄) · v)
|n− n(s̄)|5 (n− n(s̄))

)
ds̄, (B.2)

ϑ̃[Qn, Qn](Qv, Qv) =
∫ 2πa

0
M
( |s̄− s|

2a

)( (Qv−Qv(s̄))
|Qn−Qn(s̄)|3

+3
(Qn ·Qv(s̄) + Qn(s̄) ·Qv)

|Qn−Qn(s̄)|5 (Qn−Qn(s̄))
)

ds̄, (B.3)

ϑ[n, Qn](v, Qv)

=
∫ 2πa

0

(
(v−Qv(s̄))
|n−Qn(s̄)|3 + 3

(n ·Qv(s̄) + Qn(s̄) · v)
|n−Qn(s̄)|5 (n−Qn(s̄))

)
ds̄, (B.4)

and

ϑ[Qn, n](Qv, v)

=
∫ 2πa

0

(
(Qv− v(s̄))
|Qn− n(s̄)|3 + 3

(Qn · v(s̄) + n(s̄) ·Qv)
|Qn− n(s̄)|5 (Qn− n(s̄))

)
ds̄. (B.5)
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Using the elementary properties of Q defined in (4.20)1,

|Qv′′|2 = |v′′|2, |Qv′|2 = |v′|2, and |Qv|2 = |v|2. (B.6)

Furthermore, using (4.20),(4.21) and a change of variable s̄→ s̄ + 2aφ, we see that

Q>ϑ̃[Qn, Qn](Qv, Qv)

=
∫ 2πa

0
M
( |s̄− s|

2a

)( (v− v(s̄))
|n−Q>n(s̄)|3

+ 3
(n · v(s̄) + n(s̄) · v)
|n−Q>n(s̄)|5

(n− n(s̄))
)

ds̄

=
∫ 2(π+φ)a

2aφ
M
( |s̄− s|

2a

)( (v− v(s̄))
|n− n(s̄)|3 + 3

(n · v(s̄) + n(s̄) · v)
|n− n(s̄)|5 (n− n(s̄))

)
ds̄

=
∫ 2πa

0
M
( |s̄− s|

2a

)( (v− v(s̄))
|n− n(s̄)|3 + 3

(n · v(s̄) + n(s̄) · v)
|n− n(s̄)|5 (n− n(s̄))

)
ds̄

= ϑ̃[n, n](v, v), (B.7)

which implies that

ϑ̃[Qn, Qn](Qv, Qv) ·Qv = Q>ϑ̃[Qn, Qn](Qv, Qv) · v = ϑ̃[n, n](v, v) · v. (B.8)

We impose further restriction on the rotation between the perturbation for the two

loops as follows. Let φn denote the rotation φ for the n-th mode of the perturba-

tion v. Among all the values of φn, the repulsive interaction energy between the

perturbed curves n + εv and Qn + εQv, where ε is a small number, is minimized

for φn = π
n . Therefore, at φn = π

n , the equilibrium configuration will first bifurcate

into non trivial shape. Assuming this choice of φn,

Q>(φn)v(s + 2aφn) = Q(φn)v(s), 0 ≤ s ≤ 2aπ. (B.9)
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Using (B.9) and the change of variable s̄→ s̄ + 2aφn in (B.5), using the constraints

n · v = 0, n(s̄) · v(s̄) = 0, and that n and v are periodic functions with period 2πa,

Q>ϑ[Qn, n](Qv, v)

=
∫ 2πa

0

(
v−Q>v(s̄)
|n−Q>n(s̄)|3

+ 3
(n ·Q>v(s̄) + Q>n(s̄) · v)

|n−Q>n(s̄)|5
(n−Q>n(s̄))

)
ds̄

=
∫ 2(π+φn)a

2φna

(
v−Qv(s̄)
|n−Qn(s̄)|3 + 3

(n ·Qv(s̄) + Qn(s̄) · v)
|n−Qn(s̄)|5 (n−Qn(s̄))

)
ds̄

=
∫ 2πa

0

(
v−Qv(s̄)
|n−Qn(s̄)|3 + 3

(n ·Qv(s̄) + Qn(s̄) · v)
|n−Qn(s̄)|5 (n−Qn(s̄))

)
ds̄

= ϑ[n, Qn](v, Qv). (B.10)

Therefore,

ϑ[Qn, n](Qv, v) ·Qv = Q>ϑ[Qn, n](Qv, v) · v = ϑ[n, Qn](v, Qv) · v. (B.11)

The equations (B.6), (B.8), and (B.11) imply that the contribution to the second

variation of the total energy from bending energy, from intra-loop interaction and

from the inter-loop interaction, respectively from the two loops are equal. Using

these relations in (B.1), we obtain a reduced stability condition as
∫ 2πa

0
(|v′′|2 − λ|v′|2 + Λ|v|2 − ζϑ̃[n, n](v, v) · v− χϑ[n, Qn](v, Qv) · v)ds ≥ 0.

(B.12)

B.1 Useful relations

Introducing a variable η = s̄−s
2a , we represent the quantities at arc length s̄ in

terms of s and η. Below are some of the useful expressions for further calculations

e(s̄) = cos 2ηe + sin 2ηk× e, (B.13)

n(s̄) = a cos 2ηe +
√

1− a2k + a sin 2η(k× e), (B.14)

v(s̄) = −(aψ(s̄) sin 2η + a2ψ′(s̄) cos 2η)e +
a3ψ′(s̄)√

1− a2
k

+ (aψ(s̄) cos 2η − a2ψ′(s̄) sin 2η)k× e, (B.15)
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Q(φn)n = a cos φne + a sin φnk× e−
√

1− a2k, (B.16)

Q(φn)n(s̄) = a cos(2η + φn)e−
√

1− a2k + a sin(2η + φn)(k× e), (B.17)

Q(φn)v(s̄) = −[aψ(s̄) sin(2η + φn) + a2ψ′(s̄) cos(2η + φn)]e

+ [aψ(s̄) cos(2η + φn)− a2ψ′(s̄) sin(2η + φn)]k× e− a3ψ′(s̄)√
1− a2

k,

(B.18)

|n− n(s̄)| = 2a| sin η|, and (B.19)

|n−Qn(s̄)| = 2
√

1− a2 cos2(η + φn/2). (B.20)

We use the relations defined above to simplify the second variation condition

(B.12) as follows.

Bending energy terms : Using the representation of v in terms of ψ and ψ′

defined in (4.48) and the identities in (4.45), we find that

v = −a2ψ′e +
a3ψ′√
1− a2

k + aψk× e,

v′ = −(ψ + a2ψ′′)e +
a3ψ′′√
1− a2

k,

v′′ = −(a2ψ′′′ + ψ′)e +
a3ψ′′′√
1− a2

k− (aψ′′ + ψ/a)k× e,





. (B.21)

Intra-loop interaction terms :

Bearing in mind the change of variable s̄ = s + 2aη, using (B.14) and notic-

ing the representation of ψ(s̄) in terms of s and η, we find the components of
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ϑ̃[n, n](v, v)defined in (B.2) as

ϑ̃[n, n](v, v) · e = −ψ′

4

∫ π

0
M(η) csc3 η dη

+
1
4a

∫ π

0
M(η)

ψ(s + 2aη) sin 2η + aψ′(s + 2aη) cos 2η

sin3 η
dη

+
3
4a

∫ π

0
M(η)

cos η(ψ− ψ(s + 2aη)) + a sin η(ψ′ + ψ′(s + 2aη))

sin2 η
dη,

ϑ̃[n, n](v, v) · k =
aψ′

4
√

1− a2

∫ π

0
M(η) csc3 η dη − a

4
√

1− a2

∫ π

0

ψ′(s + 2aη)

sin3 η
dη,

ϑ̃[n, n](v, v) · (k× e) =
ψ

4a

∫ π

0
M(η) csc3 η dη

− 1
4a

∫ π

0
M(η)

ψ(s + 2aη) cos 2η − aψ′(s + 2aη) sin 2η

sin3 η
dη,

− 1
4a

∫ π

0

cos η[cos η(ψ− ψ(s + 2aη)) + a sin η(ψ′ + ψ′(s + 2aη))]

sin3 η
dη





.

(B.22)

Interaction energy terms : Bearing in mind the change of variable s̄ = s +

2aη, using (B.17), (B.18), (B.20) and noticing the representation of ψ(s̄) in terms of

s and η, and making an additional change of variable η → η − φn/2, we find the
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components of ϑ[n, Qn](v, Qv) defined in (B.4) as

ϑ[n, Qn](v, Qv) · e = − a3

4
ψ′
∫ π

0

1
3
√

1− a2 cos2 η
dη

+
a2

4

∫ π

0

ψ(s + 2aη − aφn) sin 2η − aψ′(s + 2aη − aφn) cos 2η
3
√

1− a2 cos2 η
dη

+
3a4

4

∫ π

0

sin2 η cos η[sin η(ψ− ψ(s + 2aη − aφn))]
5
√

1− a2 cos2 η
dη

− 3a4

4

∫ π

0

sin2 η cos η[a cos η(ψ′ + ψ′(s + 2aη − aφn))]
5
√

1− a2 cos2 η
dη,

ϑ[n, Qn](v, Qv) · k =
a4ψ′

4
√

1− a2

∫ π

0

1
3
√

1− a2 cos2 η
dη

− a4

4
√

1− a2

∫ π

0

ψ′(s + 2aη − aφn)
3
√

1− a2 cos2 η
dη

+
3a3
√

1− a2

4

∫ π

0

cos η[sin η(ψ− ψ(s + 2aη − aφn)]
5
√

1− a2 cos2 η
dη

− 3a3
√

1− a2

4

∫ π

0

cos η[a cos η(ψ′ + ψ′(s + 2aη − aφn))]
5
√

1− a2 cos2 η
dη,

ϑ[n, Qn](v, Qv) · (k× e) =
a2

4
ψ
∫ π

0

1
3
√

1− a2 cos2 η
dη

− a2

4

∫ π

0

ψ(s + 2aη − aφn) cos 2η + aψ′(s + 2aη − aφn) sin 2η
3
√

1− a2 cos2 η
dη

− 3a4

4

∫ π

0

sin η cos2 η[sin η(ψ− ψ(s + 2aη − aφn)]
5
√

1− a2 cos2 η
dη

+
3a4

4

∫ π

0

sin η cos2 η[a cos η(ψ′ + ψ′(s + 2aη − aφn))]
5
√

1− a2 cos2 η
dη,





. (B.23)

B.2 Fourier representation

Using the Fourier series representation of the functions ψ as

ψ =
∞

∑
n=2

ψn, ψn(s) = cn cos
ns
a
+ dn sin

ns
a

, (B.24)

we simplify the various terms involved in (C.2), (B.22), and (3.33) as follows.

Bending energy terms : Using the periodicity of ψn,
∫ 2πa

0
ψ2

n ds = πa(c2
n + d2

n) and
∫ 2πa

0
ψ′2n ds = πa(n/a)2(c2

n + d2
n). (B.25)
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Substituting (B.24) in (B.21) and using (B.25), we find that

∫ 2πa

0
|v′′|2 ds = πa

∞

∑
n=2

[
(n2 − 1)2(n2 + 1)

a2 +
n6

1− a2

]
(c2

n + d2
n), (B.26)

∫ 2πa

0
|v′|2 ds = πa

∞

∑
n=2

[
(n2 − 1)2 +

a2n4

1− a2

]
(c2

n + d2
n), (B.27)

∫ 2πa

0
|v|2 ds = πa

∞

∑
n=2

[
a2 +

a2n2

1− a2

]
(c2

n + d2
n), (B.28)

and it follows that

∫ 2πa

0
(|v′′|2 − λ|v′|2 + Λ|v|2)ds = πa

∞

∑
n=2

[
(n2 − 1)2(n2 + 1)

a2 +
n6

1− a2

−λ

(
(n2 − 1)2 +

a2n4

1− a2

)
+ Λa2

(
1 +

n2

1− a2

)]
(c2

n + d2
n). (B.29)

Intra-loop interaction terms : Using (B.24), we deduce the following useful rela-

tions

ψn(s + 2aη) = cos 2nηψn(s) + sin 2nη
a
n

ψ′n(s) and (B.30)

ψ′n(s + 2aη) = − sin 2nη
n
a

ψn(s) + cos 2nηψ′n(s). (B.31)

Using (B.24), (B.30), and (B.31) in the integrals in the right hand side of the equa-

tions in(B.22), we obtain

ϑ̃[n, n](v, v) · e =
1
4

∞

∑
n=2

[−I4 + 2I2/n + I3 − 2I + 3(I5 + I1 − I2/n)]ψ′n,

ϑ̃[n, n](v, v) · k =
a

4
√

1− a2

∞

∑
n=2

(I4 − I3)ψ
′
n,

ϑ̃[n, n](v, v) · (k× e) =
1
4a

∞

∑
n=2

[I4 − 2nI2 + 2I1 − I3 − 3(I4 − I5 + I1 − I3 − nI2)]ψn,





,

(B.32)

where I1, I2, I3, I4, and I5 are defined in (B.47). Using the representation of the

perturbation v as

v =
∞

∑
n=0
−a2ψ′ne +

a3ψ′n√
1− a2

k + aψnk× e, (B.33)
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and (B.25),

∫ 2πa

0
ϑ̃[n, n](v, v) · v ds =

a2

4(1− a2)

∞

∑
n=2

(I4 − I3)n2(c2
n + d2

n)

− 1
4

∞

∑
n=2

[−I4 + 2I2/n + I3 − 2I + 3(I5 + I1 − I2/n)]n2(c2
n + d2

n)

+
1
4

∞

∑
n=2

[I4 − 2nI2 + 2I1 − I3 − 3(I4 − I5 + I1 − I3 − nI2)](c2
n + d2

n). (B.34)

Inter loop interaction terms : For nth perturbation, choosing the particular value

φn = π
n of the rotation φ,

ψn(s + 2aη − aφn) = − cos 2nηψn(s)− sin 2nη
a
n

ψ′n(s) and (B.35)

ψ′n(s + 2aη − aφn) = + sin 2nη
n
a

ψn(s)− cos 2nηψ′n(s). (B.36)

Using (B.24), (B.35), and (B.36) in the integrals in the right hand side of the equa-

tions in (3.33), we obtain

ϑ[n, Qn](v, Qv) · e =
a3

4

∞

∑
n=2

[−J1 − (J3 + J4/n)− 6a2(K2 + K3/2n)]ψ′n,

ϑ[n, Qn](v, Qv) · k =
a4

4
√

1− a2

∞

∑
n=2

[J1 − J2 − 6(1− a2)(K1 +
K3 + K4

2n
)]ψ′n,

ϑ[n, Qn](v, Qv) · (k× e) =
a2

4

∞

∑
n=2

[J1 + (J3 + nJ4)− 6a2(K5 − K2 + nK4/2)]ψn,





,

(B.37)

where J1, J2, J3, J4, and J5 are defined in (B.48) and K1, K2, K3, K4, and K5 are

defined in (B.49). It follows that

∫ 2πa

0
ϑ[n, Qn](v, Qv) · v =

a3

4

∞

∑
n=2

[J1 + (J3 + J4/n) + 6a2(K2 + K3/2n)]n2(c2
n + d2

n)

+
a5

4(1− a2)

∞

∑
n=2

[J1 − J2 − 6(1− a2)(K1 +
K3 + K4

2n
)]n2(c2

n + d2
n)

a3

4

∞

∑
n=2

[J1 + (J3 + nJ4)− 6a2(K5 − K2 + nK4/2)](c2
n + d2

n). (B.38)
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Substituting (B.29), (B.34), (B.38) and the Lagrange multipliers

Λ =
aχ

2

∫ π

0

dη
3
√

1− a2 cos2 η
and

λ =
1
a2 −

ζ

2

∫ π

0
M(η) csc η dη +

χa3

2

∫ π

0

cos2 η dη
3
√

1− a2 cos2 η
(B.39)

in terms of the integrals defined in (B.47) and (B.48) as

Λ =
aχ

2
J1, and λ =

1
a2 −

ζ

2
I5 +

χa3

2
J5, (B.40)

in (B.12), we get the second variation condition as

∞

∑
n=2

πa(ΥB(n, a) + ζΥS(n, a)− ΥI(n, a)χ)[c2
n + d2

n] ≥ 0, (B.41)

or, equivalently,
∞

∑
n=2

(βn(a) + ζαn(a)− χ)[c2
n + d2

n] ≥ 0, (B.42)

where,

αn(a) =
ΥS(n, a)
ΥI(n, a)

, βn(a) =
ΥB(n, a)
ΥI(n, a)

, (B.43)

ΥB(n, a) =
n2(n2 − 1)

1− a2 (n2 − 1 + a2), (B.44)

ΥS(n, a) =
1
4

[
3[n2(I5 + I1)− 2nI2 + I1 − I3 + I4 − I5]

−I4 −
n2 I4

1− a2 + (n2 + 1)(I3 − 2I1)

+4I2n +
a2n2

1− a2 I3 + 2I5

(
(n2 − 1)2 +

a2n4

1− a2

)]
, (B.45)

ΥI(n, a) =
1
2

[
−3a5(n2(K1 − K2) + nK4 + K5 − K2)

+
a3

2

[
J1 +

n2 J1

1− a2 + (n2 + 1)J3 + 2nJ4 −
a2n2

1− a2 J2

]

+a3
(
(n2 − 1)2 +

a2n4

1− a2

)
J5 − a3

(
1 +

n2

1− a2

)
J1

]
, (B.46)
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I1 =
∫ π

0
M(η) cos 2nη csc η dη,

I2 =
∫ π

0
M(η) sin 2nη cos η csc2 η dη,

I3 =
∫ π

0
M(η) cos 2nη csc3 η dη,

I4 =
∫ π

0
M(η) csc3 η dη,

I5 =
∫ π

0
M(η) csc η dη,





,

(B.47)

J1 =
∫ π

0

1
3
√

1− a2 cos2 η
dη,

J2 =
∫ π

0

cos 2nη
3
√

1− a2 cos2 η
dη,

J3 =
∫ π

0

cos 2η cos 2nη
3
√

1− a2 cos2 η
dη,

J4 =
∫ π

0

sin 2η sin 2nη
3
√

1− a2 cos2 η
dη,

J5 =
∫ π

0

cos2 η
3
√

1− a2 cos2 η
dη,





, (B.48)

and

K1 =
∫ π

0

cos2 η sin2 nη
5
√

1− a2 cos2 η
dη,

K2 =
∫ π

0

cos2 η sin2 η sin2 nη
5
√

1− a2 cos2 η
dη,

K3 =
∫ π

0

cos η sin3 η sin 2nη
5
√

1− a2 cos2 η
dη,

K4 =
∫ π

0

sin η cos3 η sin 2nη
5
√

1− a2 cos2 η
dη,

K5 =
∫ π

0

sin2 η cos2 η
5
√

1− a2 cos2 η
dη.





. (B.49)
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Appendix C Linear Bifurcation analysis

Substituting σ1 = σ and Σ1 = Σ from (4.61) in (4.57)1, we obtain

v′′′′ + λv′′ + Λv + σ′n′ + σn′′ + Σn = ζϑ̃[n, n](v, v) + χϑ[n, Qn](v, Qv). (C.1)

Using the representation of v in (4.48) in terms of ψ and ψ′ and the identities

in (4.44), we find that

v′′′′ = (−a2ψ′′′′′ + 2ψ′′′ + 3ψ′/a2)e +
a3ψ′′′′′√

1− a2
k

+ (−3aψ′′′′ − 2ψ′′/a + ψ/a3)k× e,

v′′ = −(a2ψ′′′ + ψ′)e +
a3ψ′′′√
1− a2

k− (aψ′′ + ψ/a)k× e,

v = −a2ψ′e +
a3ψ′√
1− a2

k + aψk× e,





. (C.2)

Using the Fourier representation of ψ in (B.24) and the equations in (C.2), compo-

nents first three terms in the left hand side of the linearized equilibrium equations

(C.1) in the direction e, k, and k× e can be written as

[v′′′′ + λv′′ + Λv] · e =
∞

∑
n=2

(
− (n2 − 1)(n2 + 3)

a2 + λ(n2 − 1)−Λa2
)

ψ′n,

[v′′′′ + λv′′ + Λv] · k =
∞

∑
n=2

1√
1− a2

(
n4

a
− λan2 + Λa3

)
ψ′n,

[v′′′′ + λv′′ + Λv] · k× e =
∞

∑
n=2

(−3n4 + 2n2 + 1 + λa2(n2 − 1)
a3 + aΛ

)
ψn,





.

(C.3)

Additionally, we assume that the σ and Σ take the form

σ =
∞

∑
n=2

σn, and Σ =
∞

∑
n=2

Σn, (C.4)

where
σ(s) = pn cos

ns
a
+ qn sin

ns
a

,

Σ(s) = un cos
ns
a
+ vn sin

ns
a

,





. (C.5)
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Substituting (C.3), (B.32), and (B.37) in (C.1), using the Fourier series represen-

tation of ψ, σ, Σ, and noting that the coefficient of the Fourier terms cos ns
a and

sin ns
a independently satisfy (C.1), we obtain for each mode n, a system of six

linear equation in six unknowns cn, dn, pn, qn, un, and vn that can be written as

Ax = 0, (C.6)

where

A =




ΘΩ −1/a1 a1

ΠΩ (1− a2)1

Ψ1 n/aΩ




and x =




c

d

p

q

u

v




. (C.7)

Ω and 1 are 2× 2 matrices defined as

Ω =




0 1

−1 0


 , 1 =




1 0

0 1


 , (C.8)

and

Θ = −n(n2 − 1)(n2 + 3)
a3 + λ

n(n2 − 1)
a

−Λan

− ζn
4a

[
−I4 +

2I2

n
+ I3 − 2I1 + 3I5 + 3I1 −

3I2

n

]

+
nχa2

4

[
J1 +

(
J3 +

J4

n

)
+ 6a2K2 +

3a2K3

n

]
,

Π =
n5

a2 − λn3 + Λna2 − ζn
4
(I4 − I3)

+
nχa3

4

[
−J1 + J2 + 6(1− a2)

(
K1 +

K3 + K4

2n

)]
,

Ψ =
−3n4 + 2n2 + 1 + λa2(n2 − 1)

a3 + aΛ

− ζ

4a
(I4 − 2nI2 + 2I1 − I3 − 3(I4 − I5 + I1 − I3 − nI2))

− χa2

4
(J1 + (J3 + nJ4)− 6a2(K5 − K2 + nK4/2)),





, (C.9)
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the integrals (I1, I2, I3, I4, I5) are defined in (B.47), (J1, J2, J3, J4, J5) are defined in

(B.48), and (K1, K2, K3, K4, K5 ) are defined in (B.49).

For the system of equations (C.6) to have a non zero solution x, it is required

that the matrix A is non-invertible which yields

det A = 0. (C.10)

This condition is equivalent to the criteria that Dug(u0, ε0) is non-invertible which

is a necessary condition for (u0, ε0) to be a bifurcation point described in section

4.4 of chapter 4
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Appendix D Rigid rotation about a vector

in equatorial plane

Consider a particular form of perturbation such that the perturbed loops are

circular but are no more co-axial. This can be achieved by rotating either of the

circular loop about a vector in the equatorial plane. The bending energy and

the intra-loop energy remains unchanged by such class of perturbation. How-

ever, using symmetry argument, one can say that the repulsive interaction will

increase and therefore, the trivial solution is stable with respect to this class of

perturbation. In other words, when the trivial configuration is perturbed in this

fashion, the perturbed loops with reach the equilibrium where the two circular

loops are parallel to each other. We will now use linear stability analysis to show

that indeed this is true. Without loss of generality, we assume that the circular

configuration C∗2 remains unperturbed and C∗1 is rotated by an infinitesimal an-

gle φ about the unit vector i as shown in the figure D.1. In such situation, the

C∗1

C∗2

φ

k


ı

Figure D.1: Schematic of the trivial equilibrium solution and the perturbation of
the configuration C∗1 .
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perturbations v1 and v2 are given as

v1 = v and v2 = 0. (D.1)

Also, the circular loops C∗1 and C∗2 are parameterized as

n1 = n and n2 = Rn, (D.2)

where

n(s) = ae(s) +
√

1− a2k, 0 ≤ s ≤ 2πa, (D.3)

e(s) =
(

cos
s
a

)
ı +
(

sin
s
a

)
, 0 ≤ s ≤ 2πa, (D.4)

and R = I− 2k⊗ k is a reflection tensor that reflects a vector about the equatorial

plane in the opposite hemisphere. Using above parameterization of the equilib-

rium configuration and perturbations, the regularized second variation condition

(4.14) reduces to
∫ 2πa

0
(|v′′|2 − λ|v′|2 + Λ|v|2 − (ζϑ̃[n, n](v, v) + χϑ[n, Rn](v, 0)) · v)ds ≥ 0. (D.5)

The function v is given as

v = φ
(
−
√

1− a2 + a
(

sin
s
a

)
k
)

, (D.6)

that trivially satisfies both the constraints n · v = 0 and n′ · v′. Now, we evaluate

the integrals in the second variation condition (D.5) as follows :

Bending energy terms :
∫ 2πa

0
|v|2 ds = φ2(2− a2)(πa),

∫ 2πa

0
|v′|2 ds = φ2(πa),

∫ 2πa

0
|v′′|2 ds =

φ2

a2 (πa).

(D.7)

Expressing the Lagrange multipliers λ and Λ in terms of the integrals as defined

in (B.40), we get
∫ 2πa

0
(|v′′|2 − λ|v′|2 + Λ|v|2 = φ2(πa)

[
ζ

2
I5 + χaJ1 −

χa3

2
(J1 + J5)

]
. (D.8)
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Intra-loop energy terms : Using (4.15),

ϑ̃[n, n](v, v)

=
∫ 2πa

0
M
( |s̄− s|

2a

)( (v− v(s̄))
|n− n(s̄)|3 + 3

(n · v(s̄) + n(s̄) · v)
|n− n(s̄)|5 (n− n(s̄))

)
ds̄. (D.9)

Therefore,

∫ 2πa

0
ϑ̃[n, n](v, v) · v ds

=
∫ 2πa

0

∫ 2πa

0
M
( |s̄− s|

2a

)( (v− v(s̄)) · v
|n− n(s̄)|3 − 3

(n · v(s̄) + n(s̄) · v)
|n− n(s̄)|5 n(s̄) · v

)
ds ds̄.

(D.10)

Using a change of variable s̄ = s + 2aη, we find that

|n− n(s̄)| = 2a| sin η|, (D.11)

v(s̄) = φ
(
−
√

1− a2 + a
(

sin
s
a

cos 2η + cos
s
a

sin 2η
)

k
)

, and (D.12)

(v− v(s̄)) · v = 2a2φ2 sin2 s
a

sin2 η − a2φ2 cos 2η sin
s
a

cos
s
a

. (D.13)

The first term on the right hand side in (D.10) simplify as

∫ 2πa

0

∫ 2πa

0
M
( |s̄− s|

2a

)( (v− v(s̄)) · v
|n− n(s̄)|3

)
ds̄ ds = φ2(πa)

J5

2
. (D.14)

Also,

n · v(s̄) = aφ
√

1− a2
(
− sin

s
a
+ sin

s̄
a

)
, and (D.15)

n(s̄) · v = aφ
√

1− a2
(

sin
s
a
− sin

s̄
a

)
, (D.16)

which yields n · v(s̄) + n(s̄) · v = 0. Therefore, equation (D.10) simplifies as

∫ 2πa

0
ϑ̃[n, n](v, v) · v ds = φ2(πa)

J5

2
. (D.17)

Inter-loop interaction energy : Using (D.2) and (D.1) in (3.33),

ϑ[n, Rn](v, 0) =
∫ 2πa

0

(
v

|n− Rn(s̄)|3 + 3
(Rn(s̄)) · v
|n− Rn(s̄)|5 (n− Rn(s̄))

)
ds̄, (D.18)
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which using the fact that n · v = 0, yields
∫ 2πa

0
ϑ[n, Rn](v, 0) · v ds =

∫ 2πa

0

∫ 2πa

0

(
v · v

|n− Rn(s̄)|3 − 3
((Rn(s̄)) · v)2

|n− Rn(s̄)|5
)

ds̄ ds.

(D.19)

Using (D.2), we find that

|n− Rn(s̄)| = 2
√

1− a2 cos2 η and v · v = φ2
(

1− a2 cos2 s
a

)
. (D.20)

Therefore,
∫ 2πa

0

∫ 2πa

0

(
v · v

|n− Rn(s̄)|3
)

ds̄ ds = φ2(πa)
(

a
2
− a3

4

)
J1. (D.21)

Also, using (D.1) and (D.2), a straightforward calculation yields

Rn(s̄) · v = a2φ2(1− a2)4 cos2 η
(

sin2 s
a

cos2 η + sin2 η cos2 s
a

)
. (D.22)

Using the fact that
∫ 2πa

0
sin2 s

a
ds =

∫ 2πa

0
cos2 s

a
ds = πa, (D.23)

we find that
∫ 2πa

0

∫ 2πa

0

(Rn(s̄) · v)
|n− Rn(s̄)|5 ds̄ ds =

a3

4
φ2(1− a2)(πa)K6,

where

K6 =
∫ π

0

cos2 η
5
√

1− a2 cos2 η
dη. (D.24)

Thus, equation (D.18) simplifies as
∫ 2πa

0
ϑ[n, Rn](v, 0) · v ds =

πa2φ2

4

(
(2− a2)J1 − 3a2(1− a2)K6

)
. (D.25)

Combining the bending energy terms in (D.8), intra-loop interaction term (D.17),

and inter-loop interaction term , we get

∫ 2πa

0
(|v′′|2 − λ|v′|2 + Λ|v|2 − (ζϑ̃[n, n](v, v) + χϑ[n, Rn](v, 0)) · v)ds =

χπa2φ2

4

(
(2− a2)J1 − 2a2 J5 + 3a2(1− a2)K6

)
. (D.26)
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We observe that the second variation only consists of terms proportional to the

inter-loop repulsion parameter χ which indicates that the second variation is zero

with respect to the bending energy and the intra-loop interaction energy as we

had proposed in beginning of this appendix. Using the definition of the integrals

J1 and J5 in (B.48) and K6 in (D.24), the integrals on the right hand side of the

above equation simplifies as

I1 =
∫ π

0

(2− a2)(1− a2 cos2 η)− 2a2 cos2 η(1− a2 cos2 η) + 3a2(1− a2) cos2 η
5
√

1− a2 cos2 η
dη.

(D.27)

Consider another integral

I2 =
∫ π

0

[
(2− a2)(1− a2 cos2 η)− 2a2 cos2 η(1− a2 cos2 η) + 3a2(1− a2) cos2 η

]
dη

=
1
4
(8− 6a2 − a4)

> 0 ∀a ∈ [0, 1]. (D.28)

Using the fact that I2 is obtained by replacing 5
√

1− a2 cos2 η in the dominator of

kernel of I1 with unity and that I2 > 0, it can be deduced that I1 > I2 which

further implies that I1 > 0. Therefore, we have shown that

∫ 2πa

0
(|v′′|2−λ|v′|2 +Λ|v|2− (ζϑ̃[n, n](v, v)+χϑ[n, Rn](v, 0)) · v)ds > 0. (D.29)

Hence, the trivial configuration C∗1 and C∗2 described by the parameterization

(D.2)-(D.4) are stable with respect to the perturbation given in (D.1) and (D.6).
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